/* * Copyright (c) 2022 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "GpuKernelComponentGraph.h" #include "arm_compute/dynamic_fusion/sketch/MemoryDescriptor.h" namespace arm_compute { namespace experimental { namespace dynamic_fusion { namespace { /** Automatically create memory descriptors for all tensors in the graph * * @param[in] tensors @ref ITensorInfo map * @param[in] graph @ref DependencyGraph of which the @p tensors are a part * * @return MemoryDescriptorMap An assignment map of @ref MemoryDescriptors for each ITensorInfo in the graph */ MemoryDescriptorMap assign_memory_descriptors(const std::map tensors, const DependencyGraph &graph) { MemoryDescriptorMap mem_map{}; for(auto t_id : graph.all_tensors()) { const auto &tensor = tensors.at(t_id); // Only global src and dst tensors to the entire component graph are "User" tensors, which are user-specified memories if(is_in(t_id, graph.global_src_tensors()) || is_in(t_id, graph.global_dst_tensors())) { mem_map[t_id] = MemoryDescriptor{ MemoryType::User }; } else { AuxMemoryInfo aux_mem_info{ tensor->total_size() }; mem_map[t_id] = MemoryDescriptor{ MemoryType::Auxiliary, aux_mem_info }; } } return mem_map; } } // namespace std::vector GpuKernelComponentGraph::get_tensor_ids(const std::vector tensors) { std::vector tensor_ids{}; std::transform( std::begin(tensors), std::end(tensors), std::back_inserter(tensor_ids), [](const auto & t) { return t->id(); }); return tensor_ids; } GpuKernelComponentGraph::GpuKernelComponentGraph(GpuComponentServices *services) : _services{ services }, _components{}, _tensors{}, _dependency_graph{} { } GpuKernelComponentStream GpuKernelComponentGraph::fuse() const { // Obtain memory descriptor map const auto mem_map = assign_memory_descriptors(_tensors, _dependency_graph); /// @note Fusion constraints (for kernel components) are exactly the same as the invariants of @ref GpuKernelComponentGroup /// Fusion can be framed as a mathematical optimization problem: /// Given fusion constraints, find the "best" fusion patterns possible /// "Best" is ill-defined at the moment. For now we define "best" fusion pattern as one /// which results in the least number of fused kernels ( @ref GpuKernelComponentGroup ) at the end /// As the first iteration, we offer a sub-optimal algorithm here which ensures all /// constraints are met, but provides no guarantee that the fusion pattern is optimal GpuKernelComponentStream stream{ _services, mem_map }; // Break down into linear groups of components (constraint 1), preserving topological order const auto linear_graphs = _dependency_graph.topological_partition(); // Further divide up the linear groups based on rest of the fusion constraints (rely on component group's invariants) for(const auto &graph : linear_graphs) { for(unsigned int i = 0; i < graph.size(); ++i) { const auto comp = _components.at(graph[i].op).get(); // Each new linear graph signals a new component group in the stream if(i == 0) { stream.new_component_group(); } // If it violates the component group's invariant / fusion constraint, breaks up the stream by inserting a new group bool success = stream.add_component(comp); if(!success) { stream.new_component_group(); success = stream.add_component(comp); ARM_COMPUTE_ERROR_ON(!success); } } } return stream; } } // namespace dynamic_fusion } // namespace experimental } // namespace arm_compute