/* * Copyright (c) 2022-2024 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/dynamic_fusion/runtime/gpu/cl/ClWorkloadRuntime.h" #include "arm_compute/core/experimental/Types.h" #include "arm_compute/runtime/CL/CLTensor.h" #include "src/dynamic_fusion/runtime/gpu/cl/ClKernelRuntime.h" #include "src/dynamic_fusion/sketch/gpu/GpuWorkloadSketchImpl.h" #include "src/dynamic_fusion/sketch/gpu/GpuWorkloadSourceCode.h" #include "support/Cast.h" #include namespace arm_compute { namespace experimental { namespace dynamic_fusion { namespace { /** Holder of any auxiliary @ref CLTensor required by a @ref GpuWorkloadSourceCode. * * @note The tensors are not allocated by default, and require the user to explicitly allocate them using the associated @ref TensorInfo and @ref AuxMemoryInfo * * @note This data holder must remain valid until the @ref ClWorkloadRuntime that uses it, is out of scope */ class ClAuxTensors { public: /** A view of a single auxiliary data and the associated @ref TensorInfo and @ref AuxMemoryInfo */ struct DataView { DataView() = default; DataView(CLTensor *tensor, const TensorInfo &tensor_info, const AuxMemoryInfo &memory_info) : tensor{tensor}, tensor_info{tensor_info}, memory_info{memory_info} { } ~DataView() = default; DataView(const DataView &other) = default; DataView &operator=(const DataView &other) = default; DataView(DataView &&other) = default; DataView &operator=(DataView &&other) = default; CLTensor *tensor{}; /**< Pointer to the auxiliary tensor */ TensorInfo tensor_info{}; /**< Associated tensor info */ AuxMemoryInfo memory_info{}; /**< Memory requirement */ }; /** Get views of all auxiliary tensors. This is mainly used for allocating the auxiliary tensors. */ std::vector get_tensors() { return _tensors; } std::vector get_tensors() const { return _tensors; } friend Status create_aux_tensors(ClAuxTensors *aux_tensors, const GpuWorkloadSourceCode &code); private: /** Add auxiliary tensor. * * @param[in] tensor_info @ref ITensorInfo of the auxiliary tensor * @param[in] memory_info Memory requirements of the auxiliary tensor * * @return CLTensor* Corresponding tensor memory if successfully added, otherwise nullptr */ CLTensor *add_aux_tensor(const ITensorInfo &tensor_info, const AuxMemoryInfo &aux_memory_info) { const auto t_id = tensor_info.id(); auto find_tensor_pair = _owned_tensors.find(t_id); if (find_tensor_pair != _owned_tensors.end()) { return find_tensor_pair->second.get(); } else { auto tensor = std::make_unique(); auto inserted_pair = _owned_tensors.emplace(t_id, std::move(tensor)).first; auto new_tensor = inserted_pair->second.get(); _tensors.emplace_back(new_tensor, tensor_info, aux_memory_info); return new_tensor; } } std::map> _owned_tensors{}; std::vector _tensors{}; }; /** Construct auxiliary tensors required by @ref GpuWorkloadSourceCode * * @note This is the only recommended method for user to create @ref ClAuxTensors * * @param[out] aux_tensors Auxiliary tensors required by the workload code * @param[in] code @ref GpuWorkloadSourceCode which all tensors bind to * * @return Status */ Status create_aux_tensors(ClAuxTensors *aux_tensors, const GpuWorkloadSourceCode &code) { for (auto t_id : code.tensors()) { // Get tensor object const auto workload_arg = code.query_tensor(t_id); ICLTensor *tensor_object = nullptr; if (workload_arg->memory_descriptor()->memory_type == MemoryType::Auxiliary) { // Create aux tensor CLTensor object const TensorInfo tensor_info = *workload_arg->tensor_info(); ARM_COMPUTE_ERROR_ON(tensor_info.id() != t_id); const auto aux_memory_info = workload_arg->memory_descriptor()->aux_memory_info; tensor_object = aux_tensors->add_aux_tensor(tensor_info, aux_memory_info); if (tensor_object == nullptr) { return ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Failed to construct an auxiliary tensor"); } } } return Status{}; } /** A fast tensor lookup table for runtime tensor objects retrieval */ class ClTensorLUT { public: /** Find a tensor pack associated with the @ref UnitWorkloadId @p uwk_id * * @param[in] uwk_id @ref UnitWorkloadId associated with the tensor pack * * @return ITensorPack* */ ITensorPack *find_tensor_pack(UnitWorkloadId uwk_id) { auto tensor_pack = _tensor_packs.find(uwk_id); if (tensor_pack != _tensor_packs.end()) { return &(tensor_pack->second); } return nullptr; } /** Get a tensor pack associated with @p uwk_id. Throws a exception if it cannot be found. * * @param[in] uwk_id @ref UnitWorkloadId associated with the tensor pack * * @return ITensorPack* */ ITensorPack &get_tensor_pack(UnitWorkloadId uwk_id) { return _tensor_packs.at(uwk_id); } friend Status create_tensor_lut(ClTensorLUT *tensor_lut, const GpuWorkloadSourceCode &code, const std::vector &user_tensors, const ClAuxTensors &aux_tensors); private: /** Add a tensor pack and associate it with @ref UnitWorkloadId @p uwk_id * * @param[in] uwk_id @ref UnitWorkloadId associated with the tensor pack * @param[in] tensor_pack Tensor pack to be added */ void add_tensor_pack(UnitWorkloadId uwk_id, const ITensorPack &tensor_pack) { _tensor_packs[uwk_id] = tensor_pack; } std::map _tensor_packs{}; }; /** Create a fast tensor lookup table for runtime tensor retrieval * * @param[out] tensor_lut @ref ClTensorLUT used by the runtime to feed tensor memories to underlying kernels * @param[in] code @ref GpuWorkloadSourceCode which all tensors bind to * @param[in] user_tensors User tensors * @param[in] aux_tensors Auxiliary tensors required by the workload code * * @return Status */ Status create_tensor_lut(ClTensorLUT *tensor_lut, const GpuWorkloadSourceCode &code, const std::vector &user_tensors, const ClAuxTensors &aux_tensors) { // Combine user tensors and aux tensors std::map tensor_map; for (auto tensor : user_tensors) { const auto t_id = tensor->info()->id(); if (tensor_map.find(t_id) != tensor_map.end()) { // In case of elementwise in-place: give another Id to the In/Out tensor when passed again std::vector ids; for (auto &t : tensor_map) { ids.push_back(t.first); } ITensorInfo::Id new_id = *std::max_element(ids.begin(), ids.end()) + 1; tensor_map[new_id] = tensor; } else { tensor_map[t_id] = tensor; } } for (const auto &data : aux_tensors.get_tensors()) { const auto t_id = data.tensor_info.id(); const auto tensor = data.tensor; if (tensor_map.find(t_id) != tensor_map.end()) { return ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Clashing tensor ids"); } tensor_map[t_id] = tensor; } // Add tensor objects into corresponding tensor packs for (auto id_tensor : tensor_map) { const auto t_id = id_tensor.first; const auto tensor_object = id_tensor.second; if (tensor_object == nullptr) { return ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Trying to add a nullptr into the tensor packs"); } if (tensor_object->allocator()->info().total_size() == 0U) { return ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "No allocated memory found in tensor"); } for (auto uwk_id : code.get_unit_workloads_from_tensor(t_id)) { ITensorPack *tensor_pack = tensor_lut->find_tensor_pack(uwk_id); if (tensor_pack == nullptr) { tensor_lut->add_tensor_pack(uwk_id, ITensorPack{{t_id, tensor_object}}); } else { tensor_pack->add_tensor(t_id, tensor_object); } } } return Status{}; } } // namespace struct ClWorkloadRuntime::Implementation { std::map> _kernels{}; std::map> _kernels_prep{}; bool _is_configured{false}; bool _is_prepared{false}; ClTensorLUT _tensor_lut{}; ClAuxTensors _aux_tensors{}; GpuWorkloadSourceCode _source_code{}; }; ClWorkloadRuntime::ClWorkloadRuntime() : _impl{std::make_unique()} { } ClWorkloadRuntime::~ClWorkloadRuntime() = default; ClWorkloadRuntime::ClWorkloadRuntime(ClWorkloadRuntime &&) = default; ClWorkloadRuntime &ClWorkloadRuntime::operator=(ClWorkloadRuntime &&) = default; Status ClWorkloadRuntime::configure(const GpuWorkloadSketch &sketch) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(_impl->_is_configured, "ClWorkloadRuntime cannot be re-configured"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(sketch.gpu_context()->gpu_language() != GpuLanguage::OpenCL, "ClWorkloadRuntime cannot be configured with non-OpenCL workload sketch"); // Generate source code _impl->_source_code = sketch.implementation().generate_source_code(); // Configure unit workload from source code for (auto uwk_id : _impl->_source_code.unit_workloads()) { const auto work = _impl->_source_code.query_unit_workload(uwk_id); const auto stage = work.stage().stage; auto k = std::make_unique(); k->configure(*sketch.gpu_context()->cl_compile_context(), work.code()); switch (stage) { case UnitWorkloadStage::Stage::Run: { _impl->_kernels.emplace(work.id(), std::move(k)); break; } case UnitWorkloadStage::Stage::Prepare: { _impl->_kernels_prep.emplace(work.id(), std::move(k)); break; } default: { ARM_COMPUTE_ERROR("Invalid unit workload stage"); } } } // Create auxiliary tensor objects create_aux_tensors(&_impl->_aux_tensors, _impl->_source_code); _impl->_is_configured = true; return Status{}; } void ClWorkloadRuntime::prepare() { if (!_impl->_is_prepared) { for (auto &id_kernel_pair : _impl->_kernels_prep) { const bool flush_queue = false; const auto uwk_id = id_kernel_pair.first; auto kernel = id_kernel_pair.second.get(); CLScheduler::get().enqueue_op(*kernel, _impl->_tensor_lut.get_tensor_pack(uwk_id), flush_queue); } _impl->_is_prepared = true; } } Status ClWorkloadRuntime::run(const std::vector &tensors) { // Need to create the tensor lut in every run, unless the user can guarantee the binding remains fixed, // in which case the lut can be cached during prepare const auto st = create_tensor_lut(&_impl->_tensor_lut, _impl->_source_code, tensors, _impl->_aux_tensors); ARM_COMPUTE_RETURN_ON_ERROR(st); prepare(); for (auto &id_kernel_pair : _impl->_kernels) { // Flush the command queue on the last kernel const bool flush_queue = false; const auto uwk_id = id_kernel_pair.first; auto kernel = id_kernel_pair.second.get(); CLScheduler::get().enqueue_op(*kernel, _impl->_tensor_lut.get_tensor_pack(uwk_id), flush_queue); } return Status{}; } std::vector> ClWorkloadRuntime::get_auxiliary_tensors() { std::vector> aux_tensors; for (const auto &data : _impl->_aux_tensors.get_tensors()) { aux_tensors.emplace_back(data.tensor, data.tensor_info, data.memory_info); } return aux_tensors; } } // namespace dynamic_fusion } // namespace experimental } // namespace arm_compute