/* * Copyright (c) 2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/cpu/operators/CpuWinogradConv2d.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "arm_compute/runtime/FunctionDescriptors.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include "src/core/CPP/Validate.h" #include "src/core/NEON/kernels/convolution/common/utils.hpp" #include "src/core/NEON/kernels/convolution/winograd/winograd.hpp" #include "src/core/helpers/MemoryHelpers.h" #include "src/cpu/kernels/CpuWinogradConv2dKernel.h" #include "src/cpu/operators/CpuActivation.h" #include "src/cpu/operators/CpuPermute.h" #include "src/cpu/operators/CpuWinogradConv2d.h" #include "src/cpu/utils/CpuAuxTensorHandler.h" #include "support/Cast.h" #include namespace arm_compute { namespace cpu { using namespace arm_compute::experimental; using namespace arm_compute::utils::cast; namespace { arm_gemm::Activation arm_gemm_activation_from_acl_activation(const ActivationLayerInfo &act_info) { switch(act_info.activation()) { case ActivationLayerInfo::ActivationFunction::RELU: { return arm_gemm::Activation(arm_gemm::Activation::Type::ReLU, act_info.a(), act_info.b()); } case ActivationLayerInfo::ActivationFunction::BOUNDED_RELU: { return arm_gemm::Activation(arm_gemm::Activation::Type::BoundedReLU, act_info.a(), act_info.b()); } default: { return arm_gemm::Activation(arm_gemm::Activation::Type::None); } } } inline Status validate_kernel_3x3(const Size2D input_dims, const ITensorInfo *src, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F16, DataType::F32); if(src->data_type() == DataType::F32) { if(input_dims.width > 4 && input_dims.height > 4) { ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformInputKernel::validate(src, input0, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformWeightsKernel::validate(weights, input1, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformOutputKernel::validate(batched_mm_output, biases, dst, winograd_info))); } else { ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformInputKernel::validate(src, input0, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformWeightsKernel::validate(weights, input1, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformOutputKernel::validate(batched_mm_output, biases, dst, winograd_info))); } } #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC else if(src->data_type() == DataType::F16) { ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformInputKernel<__fp16, 4, 4, 3, 3>::validate(src, input0, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformWeightsKernel<__fp16, 4, 4, 3, 3>::validate(weights, input1, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformOutputKernel<__fp16, 4, 4, 3, 3>::validate(batched_mm_output, biases, dst, winograd_info))); } #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ if(act_info.enabled()) { CpuActivation::validate(dst, nullptr, act_info); } return Status{}; } inline Status validate_kernel_5x5(const ITensorInfo *src, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info) { ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformInputKernel::validate(src, input0, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformWeightsKernel::validate(weights, input1, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformOutputKernel::validate(batched_mm_output, biases, dst, winograd_info))); if(act_info.enabled()) { CpuActivation::validate(dst, nullptr, act_info); } return Status{}; } inline Status validate_kernel_3x1(const ITensorInfo *src, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F32); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformInputKernel::validate(src, input0, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformWeightsKernel::validate(weights, input1, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformOutputKernel::validate(batched_mm_output, biases, dst, winograd_info))); if(act_info.enabled()) { CpuActivation::validate(dst, nullptr, act_info); } return Status{}; } inline Status validate_kernel_1x3(const ITensorInfo *src, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F32); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformInputKernel::validate(src, input0, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformWeightsKernel::validate(weights, input1, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformOutputKernel::validate(batched_mm_output, biases, dst, winograd_info))); if(act_info.enabled()) { CpuActivation::validate(dst, nullptr, act_info); } return Status{}; } inline Status validate_kernel_5x1(const ITensorInfo *src, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F32); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformInputKernel::validate(src, input0, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformWeightsKernel::validate(weights, input1, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformOutputKernel::validate(batched_mm_output, biases, dst, winograd_info))); if(act_info.enabled()) { CpuActivation::validate(dst, nullptr, act_info); } return Status{}; } inline Status validate_kernel_1x5(const ITensorInfo *src, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F32); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformInputKernel::validate(src, input0, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformWeightsKernel::validate(weights, input1, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformOutputKernel::validate(batched_mm_output, biases, dst, winograd_info))); if(act_info.enabled()) { CpuActivation::validate(dst, nullptr, act_info); } return Status{}; } inline Status validate_kernel_7x1(const ITensorInfo *src, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F32); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformInputKernel::validate(src, input0, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformWeightsKernel::validate(weights, input1, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformOutputKernel::validate(batched_mm_output, biases, dst, winograd_info))); if(act_info.enabled()) { CpuActivation::validate(dst, nullptr, act_info); } return Status{}; } inline Status validate_kernel_1x7(const ITensorInfo *src, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F32); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformInputKernel::validate(src, input0, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformWeightsKernel::validate(weights, input1, winograd_info))); ARM_COMPUTE_RETURN_ON_ERROR((CpuWinogradConv2dTransformOutputKernel::validate(batched_mm_output, biases, dst, winograd_info))); if(act_info.enabled()) { CpuActivation::validate(dst, nullptr, act_info); } return Status{}; } inline Tensor4DShape internal_get_input_shape(const ITensorInfo *src) { const DataLayout data_layout = src->data_layout(); const int in_width = src->dimension(get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH)); const int in_height = src->dimension(get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT)); const int in_channels = src->dimension(get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL)); const int in_batches = src->dimension(3); return Tensor4DShape{ in_batches, in_height, in_width, in_channels }; } Status validate_arguments(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const PadStrideInfo &conv_info) { ARM_COMPUTE_UNUSED(dst); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.stride().first != 1 || conv_info.stride().second != 1, "Winograd layer only supports unit strides."); if(biases != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, biases); ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1); } return ICpuWinogradConv2dTransformWeightsKernel::validate(src, weights); } Size2D winograd_output_tile(const Size2D &input_dims, const Size2D &kernel_dims, DataType data_type) { Size2D output_tile = Size2D{}; if(kernel_dims == Size2D(3U, 3U)) { output_tile = (input_dims.width <= 4 || input_dims.height <= 4) ? Size2D(2U, 2U) : Size2D(4U, 4U); if(data_type == DataType::F16) { output_tile = Size2D(4U, 4U); } } else if(kernel_dims == Size2D(5U, 5U)) { output_tile = Size2D(2U, 2U); } else if(kernel_dims == Size2D(1U, 3U)) { output_tile = Size2D(1U, 6U); } else if(kernel_dims == Size2D(3U, 1U)) { output_tile = Size2D(6U, 1U); } else if(kernel_dims == Size2D(1U, 5U)) { output_tile = Size2D(1U, 4U); } else if(kernel_dims == Size2D(5U, 1U)) { output_tile = Size2D(4U, 1U); } else if(kernel_dims == Size2D(7U, 1U)) { output_tile = Size2D(2U, 1U); } else if(kernel_dims == Size2D(1U, 7U)) { output_tile = Size2D(1U, 2U); } return output_tile; } bool check_support_fast_math(const Size2D &output_tile, const Size2D &kernel_size, DataType data_type) { // Check if we want to configure a Winograd configuration which requires fast math using WinogradConfiguration = std::pair, std::pair>; const std::vector fast_math_winograd_f16 = { WinogradConfiguration(std::pair(4, 4), std::pair(3, 3)) }; const std::vector fast_math_winograd_f32 = { WinogradConfiguration(std::pair(2, 2), std::pair(5, 5)), WinogradConfiguration(std::pair(4, 4), std::pair(5, 5)) }; auto p = std::make_pair(std::pair(output_tile.width, output_tile.height), std::pair(kernel_size.width, kernel_size.height)); switch(data_type) { case DataType::F16: return std::find(fast_math_winograd_f16.begin(), fast_math_winograd_f16.end(), p) != fast_math_winograd_f16.end(); case DataType::F32: return std::find(fast_math_winograd_f32.begin(), fast_math_winograd_f32.end(), p) != fast_math_winograd_f32.end(); default: return false; } } inline bool fuse_function_supported(const ActivationLayerInfo &act_info) { return act_info.activation() == ActivationLayerInfo::ActivationFunction::RELU || act_info.activation() == ActivationLayerInfo::ActivationFunction::BOUNDED_RELU; } } // namespace CpuWinogradConv2d::CpuWinogradConv2d() : _gemm_function(std::make_unique()), _activation_func(std::make_unique()), _permute_input(std::make_unique()), _permute_output(std::make_unique()), _permute_weights(std::make_unique()), _transform_input_kernel(nullptr), _transform_weights_kernel(nullptr), _transform_output_kernel(nullptr), _data_layout(), _aux_mem(AuxTensorIdx::Count), _input_nhwc(), _output_nhwc(), _input_workspace(), _kernel_storage(), _output_workspace(), _input_transformed(), _output_transformed(), _weights_hwio(), _run_activation(false), _is_prepared(false) { } CpuWinogradConv2d::~CpuWinogradConv2d() = default; void CpuWinogradConv2d::configure(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info, bool enable_fast_math) { ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, weights, biases, dst, conv_info)); // Get indices for the width and height _data_layout = src->data_layout(); const unsigned int width_idx = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH); const unsigned int height_idx = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT); const unsigned int channel_idx = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::CHANNEL); const Size2D input_dims = Size2D(src->dimension(width_idx), src->dimension(height_idx)); const Size2D kernel_size = Size2D(weights->dimension(width_idx), weights->dimension(height_idx)); const DataType data_type = src->data_type(); const Size2D output_tile = winograd_output_tile(input_dims, kernel_size, data_type); // Check if the Winograd configuration requires fast math if(!enable_fast_math) { ARM_COMPUTE_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size, data_type), "This Winograd configuration requires enable_fast_math=true"); } _is_prepared = false; std::unique_ptr transform_input_kernel; std::unique_ptr transform_weights_kernel; std::unique_ptr transform_output_kernel; int n_gemms = 1; int N_BLOCK = 1; // Size of block used by GEMM. if(data_type == DataType::F32) { if(kernel_size == Size2D(3, 3)) { if(src->dimension(width_idx) > 4 && src->dimension(height_idx) > 4) { using config = CpuWinogradConv2dConfiguration; transform_input_kernel = std::make_unique(); transform_weights_kernel = std::make_unique(); transform_output_kernel = std::make_unique(); n_gemms = config::WinogradBase::N_GEMMS; N_BLOCK = config::WinogradConv::N_BLOCK; } else { using config = CpuWinogradConv2dConfiguration; transform_input_kernel = std::make_unique(); transform_weights_kernel = std::make_unique(); transform_output_kernel = std::make_unique(); n_gemms = config::WinogradBase::N_GEMMS; N_BLOCK = config::WinogradConv::N_BLOCK; } } else if(kernel_size == Size2D(5, 5)) { using config = CpuWinogradConv2dConfiguration; transform_input_kernel = std::make_unique(); transform_weights_kernel = std::make_unique(); transform_output_kernel = std::make_unique(); n_gemms = config::WinogradBase::N_GEMMS; N_BLOCK = config::WinogradConv::N_BLOCK; } else if(kernel_size == Size2D(1, 3)) { using config = CpuWinogradConv2dConfiguration; transform_input_kernel = std::make_unique(); transform_weights_kernel = std::make_unique(); transform_output_kernel = std::make_unique(); n_gemms = config::WinogradBase::N_GEMMS; N_BLOCK = config::WinogradConv::N_BLOCK; } else if(kernel_size == Size2D(3, 1)) { using config = CpuWinogradConv2dConfiguration; transform_input_kernel = std::make_unique(); transform_weights_kernel = std::make_unique(); transform_output_kernel = std::make_unique(); n_gemms = config::WinogradBase::N_GEMMS; N_BLOCK = config::WinogradConv::N_BLOCK; } else if(kernel_size == Size2D(1, 5)) { using config = CpuWinogradConv2dConfiguration; transform_input_kernel = std::make_unique(); transform_weights_kernel = std::make_unique(); transform_output_kernel = std::make_unique(); n_gemms = config::WinogradBase::N_GEMMS; N_BLOCK = config::WinogradConv::N_BLOCK; } else if(kernel_size == Size2D(5, 1)) { using config = CpuWinogradConv2dConfiguration; transform_input_kernel = std::make_unique(); transform_weights_kernel = std::make_unique(); transform_output_kernel = std::make_unique(); n_gemms = config::WinogradBase::N_GEMMS; N_BLOCK = config::WinogradConv::N_BLOCK; } else if(kernel_size == Size2D(1, 7)) { using config = CpuWinogradConv2dConfiguration; transform_input_kernel = std::make_unique(); transform_weights_kernel = std::make_unique(); transform_output_kernel = std::make_unique(); n_gemms = config::WinogradBase::N_GEMMS; N_BLOCK = config::WinogradConv::N_BLOCK; } else if(kernel_size == Size2D(7, 1)) { using config = CpuWinogradConv2dConfiguration; transform_input_kernel = std::make_unique(); transform_weights_kernel = std::make_unique(); transform_output_kernel = std::make_unique(); n_gemms = config::WinogradBase::N_GEMMS; N_BLOCK = config::WinogradConv::N_BLOCK; } else { ARM_COMPUTE_ERROR("Not supported."); } } #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC else if(data_type == DataType::F16) { if(kernel_size == Size2D(3, 3)) { using config = CpuWinogradConv2dConfiguration<__fp16, __fp16, 4, 4, 3, 3>; transform_input_kernel = std::make_unique(); transform_weights_kernel = std::make_unique(); transform_output_kernel = std::make_unique(); n_gemms = config::WinogradBase::N_GEMMS; N_BLOCK = config::WinogradConv::N_BLOCK; } else { ARM_COMPUTE_ERROR("Not supported."); } } #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC else { ARM_COMPUTE_ERROR("Not supported."); } const PaddingType use_padding_type = (conv_info.pad_top() != 0u || conv_info.pad_left() != 0) ? PADDING_SAME : PADDING_VALID; const bool use_same_padding = use_padding_type == PADDING_SAME; // Get convolved dimensions const int in_channels = src->dimension(channel_idx); const int out_channels = dst->dimension(channel_idx); const Tensor4DShape in_shape(internal_get_input_shape(src)); const size_t data_type_size = src->element_size(); // Get the memory required to instantiate a new Winograd operator. constexpr size_t storage_alignment = 64; // Kernel Storage const size_t kernel_storage_size = transform_weights_kernel->get_weight_storage_size(out_channels, in_channels) * data_type_size; // Input storage const size_t input_storage_size = transform_input_kernel->get_input_storage_size(in_shape.n_batches, in_shape.n_channels, in_shape.n_rows, in_shape.n_cols, use_same_padding) * data_type_size; // Output storage const size_t output_storage_size = transform_output_kernel->get_output_storage_size(in_shape.n_batches, in_shape.n_rows, in_shape.n_cols, out_channels) * data_type_size; const int kernel_matrix_stride = transform_weights_kernel->get_matrix_stride(out_channels, in_channels); const int output_matrix_stride = transform_output_kernel->get_matrix_stride(in_shape.n_batches, in_shape.n_rows, in_shape.n_cols, out_channels); const auto output_shape = transform_output_kernel->get_output_shape(in_shape.n_rows, in_shape.n_cols, use_padding_type == PADDING_SAME); const int input_matrix_stride = transform_input_kernel->get_matrix_stride(in_shape.n_batches, in_channels, in_shape.n_rows, in_shape.n_cols, use_padding_type == PADDING_SAME); // Configure GEMM const int tile_rows = iceildiv(output_shape.first, output_tile.height); const int tile_cols = iceildiv(output_shape.second, output_tile.width); const int m = in_shape.n_batches * tile_rows * tile_cols; const int k = in_shape.n_channels; const int n = out_channels; const int kernel_matrix_row_stride = roundup(out_channels, N_BLOCK); const int output_matrix_row_stride = kernel_matrix_row_stride; TensorShape a_shape(k, m, 1, n_gemms); Strides a_strides(data_type_size); a_strides.set(1, a_strides[0] * k); //a_strides.set(2, data_type_size * input_matrix_stride / n_gemms); FIXME: This is the real batch size, but RSH's code crashes if it's not 0. a_strides.set(2, 0); a_strides.set(3, data_type_size * input_matrix_stride); TensorShape b_shape(n, k, n_gemms); Strides b_strides(data_type_size); b_strides.set(1, data_type_size * kernel_matrix_row_stride); b_strides.set(2, data_type_size * kernel_matrix_stride); TensorShape d_shape(n, m, 1, n_gemms); Strides d_strides(data_type_size); d_strides.set(1, data_type_size * output_matrix_row_stride); //d_strides.set(2, data_type_size * output_matrix_stride / n_gemms); FIXME: This is the real batch size, but RSH's code crashes if it's not 0. d_strides.set(2, 0); d_strides.set(3, data_type_size * output_matrix_stride); TensorInfo a_info{}; TensorInfo b_info{}; TensorInfo d_info{}; a_info.init(a_shape, 1, data_type, a_strides, 0, input_storage_size); b_info.init(b_shape, 1, data_type, b_strides, 0, kernel_storage_size); d_info.init(d_shape, 1, data_type, d_strides, 0, output_storage_size); _input_transformed = a_info; _kernel_storage = b_info; _output_transformed = d_info; const ITensorInfo *input_to_use = src; ITensorInfo *output_to_use = dst; PermutationVector weights_permutation_vector(3U, 0U, 1U, 2U); const unsigned int max_num_threads = NEScheduler::get().num_threads(); // Configure the kernel to transform the input tensor from NCHW -> NHWC if(_data_layout == DataLayout::NCHW) { _permute_input->configure(src, &_input_nhwc, PermutationVector(2U, 0U, 1U)); input_to_use = &_input_nhwc; weights_permutation_vector = PermutationVector(3U, 2U, 0U, 1U); } // Configure input transform kernel transform_input_kernel->configure(input_to_use, in_shape.n_batches, in_shape.n_rows, in_shape.n_cols, in_shape.n_channels, use_padding_type, &_input_transformed, input_matrix_stride, &_input_workspace); const size_t input_workspace_size = transform_input_kernel->get_working_space_size(max_num_threads); TensorInfo input_workspace_info(TensorShape(input_workspace_size), 1, DataType::U8); _input_workspace = input_workspace_info; // Re-order a weight tensor from [Output feature map x Input feature map x Height x Width] to [Height x Width x Input feature map x Output feature map] _permute_weights->configure(weights, &_weights_hwio, weights_permutation_vector); transform_weights_kernel->configure(&_weights_hwio, &_kernel_storage, kernel_matrix_stride, out_channels, in_channels); // Configure GEMM function _gemm_function->configure(&_input_transformed, &_kernel_storage, nullptr, &_output_transformed, 1.0f, 0.f); // Configure output transform function // The biases tensor has not been allocated at this point in time, the output transform will add the biases to the final result in the run() method if(_data_layout == DataLayout::NCHW) { // configure and allocate dst tensor to be used to convert from winograd domain to spatial domain when calling to reshape_output() TensorInfo info(TensorShape(dst->dimension(2), dst->dimension(0), dst->dimension(1), dst->dimension(3)), 1, dst->data_type()); _output_nhwc = info; output_to_use = &_output_nhwc; } const arm_gemm::Activation activation = arm_gemm_activation_from_acl_activation(act_info); transform_output_kernel->configure(biases, &_output_transformed, output_matrix_stride, output_to_use, in_shape.n_batches, output_shape.first, output_shape.second, out_channels, &_output_workspace, activation); const size_t output_workspace_size = transform_output_kernel->get_working_space_size(max_num_threads); TensorInfo output_workspace_info(TensorShape(output_workspace_size), 1, DataType::U8); _output_workspace = output_workspace_info; // Reorder the convoluted output to ACL's ordering NCHW if(_data_layout == DataLayout::NCHW) { _permute_output->configure(&_output_nhwc, dst, PermutationVector(1U, 2U, 0U)); } _transform_input_kernel = std::move(transform_input_kernel); _transform_weights_kernel = std::move(transform_weights_kernel); _transform_output_kernel = std::move(transform_output_kernel); //Configure Activation Layer _run_activation = act_info.enabled() && !fuse_function_supported(act_info); if(_run_activation) { _activation_func->configure(dst, nullptr, act_info); } auto asm_mem_req = _gemm_function->workspace(); _aux_mem[GemmWorkspace] = asm_mem_req[GemmWorkspace]; _aux_mem[Pretranspose] = asm_mem_req[Pretranspose]; _aux_mem[InterleavedLHS] = asm_mem_req[InterleavedLHS]; _aux_mem[TransposedRHS] = asm_mem_req[TransposedRHS]; _aux_mem[TempResult] = asm_mem_req[TempResult]; // Request temporary memory. Overlap memory needed for Input/Output transformations as they run on different non-overlapping time-steps. _aux_mem[TransformedInput] = MemoryInfo(offset_int_vec(TransformedInput), MemoryLifetime::Temporary, input_storage_size, storage_alignment); _aux_mem[TransformedOutput] = MemoryInfo(offset_int_vec(TransformedOutput), MemoryLifetime::Temporary, output_storage_size, storage_alignment); _aux_mem[WorkspaceIO] = MemoryInfo(offset_int_vec(WorkspaceIO), MemoryLifetime::Temporary, std::max(input_workspace_size, output_workspace_size)); _aux_mem[PermutedWeights] = MemoryInfo(offset_int_vec(PermutedWeights), MemoryLifetime::Prepare, _weights_hwio.total_size()); _aux_mem[TransformedWeights] = MemoryInfo(offset_int_vec(TransformedWeights), MemoryLifetime::Persistent, kernel_storage_size, storage_alignment); if(_data_layout == DataLayout::NCHW) { _aux_mem[PermutedInput].merge(offset_int_vec(PermutedInput), src->total_size()); _aux_mem[PermutedOutput].merge(offset_int_vec(PermutedOutput), dst->total_size()); } } Status CpuWinogradConv2d::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info, bool enable_fast_math) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, weights, biases, dst, conv_info)); // Get indices for the width and height const size_t idx_width = get_data_layout_dimension_index(src->data_layout(), DataLayoutDimension::WIDTH); const size_t idx_height = get_data_layout_dimension_index(src->data_layout(), DataLayoutDimension::HEIGHT); // Input shape, kernel size and output tile const Size2D input_dims = Size2D(src->dimension(idx_width), src->dimension(idx_height)); const Size2D kernel_size = Size2D(weights->dimension(idx_width), weights->dimension(idx_height)); const DataType data_type = src->data_type(); const Size2D output_tile = winograd_output_tile(input_dims, kernel_size, data_type); // Check if the Winograd configuration requires fast math if(!enable_fast_math) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size, data_type), "This Winograd configuration requires enable_fast_math=true"); } const WinogradInfo winograd_info = WinogradInfo(output_tile, kernel_size, input_dims, conv_info, src->data_layout()); // Validate input transform const TensorShape input0_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*src, winograd_info); const TensorInfo input0 = src->clone()->set_tensor_shape(input0_shape); // Validate filter transform const TensorShape input1_shape = misc::shape_calculator::compute_winograd_filter_transform_shape(*weights, winograd_info); const TensorInfo input1 = weights->clone()->set_tensor_shape(input1_shape); // Validate batched matrix multiply TensorShape batched_mm_output_shape = input0.tensor_shape(); batched_mm_output_shape[0] = input1.tensor_shape()[0]; const TensorInfo batched_mm_output = input0.clone()->set_tensor_shape(batched_mm_output_shape); if(kernel_size == Size2D(3, 3)) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_top() != 1, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_bottom() != 0u && conv_info.pad_bottom() != 1, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_left() != 1, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != 0u && conv_info.pad_right() != 1, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != conv_info.pad_left(), "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != conv_info.pad_bottom(), "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != conv_info.pad_left(), "Only SAME or VALID padding supported"); return validate_kernel_3x3(input_dims, src, &input0, &input1, &batched_mm_output, weights, biases, dst, winograd_info, act_info); } else if(kernel_size == Size2D(5, 5)) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_top() != 2, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_left() != 2, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_bottom() != 0u && conv_info.pad_bottom() != 2, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != 0u && conv_info.pad_right() != 2, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != conv_info.pad_left(), "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != conv_info.pad_bottom(), "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != conv_info.pad_left(), "Only SAME or VALID padding supported"); return validate_kernel_5x5(src, &input0, &input1, &batched_mm_output, weights, biases, dst, winograd_info, act_info); } if(kernel_size == Size2D(3, 1)) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_left() != 1, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != 0u && conv_info.pad_right() != 1, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_bottom() != 0, "Only SAME or VALID padding supported"); return validate_kernel_3x1(src, &input0, &input1, &batched_mm_output, weights, biases, dst, winograd_info, act_info); } else if(kernel_size == Size2D(1, 3)) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_top() != 1, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_bottom() != 0u && conv_info.pad_bottom() != 1, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_right() != 0, "Only SAME or VALID padding supported"); return validate_kernel_1x3(src, &input0, &input1, &batched_mm_output, weights, biases, dst, winograd_info, act_info); } else if(kernel_size == Size2D(5, 1)) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_left() != 2, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != 0u && conv_info.pad_right() != 2, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_bottom() != 0, "Only SAME or VALID padding supported"); return validate_kernel_5x1(src, &input0, &input1, &batched_mm_output, weights, biases, dst, winograd_info, act_info); } else if(kernel_size == Size2D(1, 5)) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_top() != 2, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_bottom() != 0u && conv_info.pad_bottom() != 2, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_right() != 0, "Only SAME or VALID padding supported"); return validate_kernel_1x5(src, &input0, &input1, &batched_mm_output, weights, biases, dst, winograd_info, act_info); } else if(kernel_size == Size2D(7, 1)) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_left() != 3, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != 0u && conv_info.pad_right() != 3, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_bottom() != 0, "Only SAME or VALID padding supported"); return validate_kernel_7x1(src, &input0, &input1, &batched_mm_output, weights, biases, dst, winograd_info, act_info); } else if(kernel_size == Size2D(1, 7)) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_top() != 3, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_bottom() != 0u && conv_info.pad_bottom() != 3, "Only SAME or VALID padding supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_right() != 0, "Only SAME or VALID padding supported"); return validate_kernel_1x7(src, &input0, &input1, &batched_mm_output, weights, biases, dst, winograd_info, act_info); } else { ARM_COMPUTE_RETURN_ERROR_MSG("Kernel shape not supported"); } } void CpuWinogradConv2d::run(ITensorPack &tensors) { prepare(tensors); auto a = tensors.get_const_tensor(ACL_SRC_0); auto c = tensors.get_const_tensor(ACL_SRC_2); auto d = tensors.get_tensor(ACL_DST); CpuAuxTensorHandler input_nhwc(offset_int_vec(PermutedInput), _input_nhwc, tensors, true); CpuAuxTensorHandler input_transformed(offset_int_vec(TransformedInput), _input_transformed, tensors, true); CpuAuxTensorHandler input_workspace(offset_int_vec(WorkspaceIO), _input_workspace, tensors, true); const bool is_nchw = _data_layout == DataLayout::NCHW; if(is_nchw) { //Bring channels to the front as Winograd code expects the tensor to be in the format NHWC ITensorPack pack{ { ACL_SRC, a }, { ACL_DST, input_nhwc.get() } }; _permute_input->run(pack); } // Transform input tensor to the winograd domain ITensorPack transform_input_pack{ { ACL_SRC, is_nchw ? input_nhwc.get() : a }, { ACL_DST, input_transformed.get() }, { ACL_INT, input_workspace.get() } }; NEScheduler::get().schedule_op(_transform_input_kernel.get(), Window::DimX, _transform_input_kernel->window(), transform_input_pack); CpuAuxTensorHandler output_transformed(offset_int_vec(TransformedOutput), _output_transformed, tensors, true); CpuAuxTensorHandler weights_transformed(offset_int_vec(TransformedWeights), _kernel_storage, tensors, true); // Run 16 GEMMs in multiple threads, each kernel runs one or more GEMMs ITensorPack gemm_pack = tensors; gemm_pack.add_const_tensor(ACL_SRC, input_transformed.get()); gemm_pack.add_const_tensor(ACL_SRC_1, weights_transformed.get()); gemm_pack.add_const_tensor(ACL_BIAS, nullptr); gemm_pack.add_tensor(ACL_DST, output_transformed.get()); _gemm_function->run(gemm_pack); // Transform output tensor to the spatial domain CpuAuxTensorHandler output_workspace(offset_int_vec(WorkspaceIO), _output_workspace, tensors, true); CpuAuxTensorHandler output_nhwc(offset_int_vec(PermutedOutput), _output_nhwc, tensors, true); ITensorPack transform_output_pack{ { ACL_SRC_0, c }, { ACL_SRC_1, output_transformed.get() }, { ACL_DST, is_nchw ? output_nhwc.get() : d }, { ACL_INT, output_workspace.get() } }; NEScheduler::get().schedule_op(_transform_output_kernel.get(), Window::DimX, _transform_output_kernel->window(), transform_output_pack); if(is_nchw) { // Reorder the convoluted output to ACL's ordering NCHW ITensorPack pack{ { ACL_SRC, output_nhwc.get() }, { ACL_DST, d } }; _permute_output->run(pack); } if(_run_activation) { ITensorPack pack{ { ACL_SRC, d }, { ACL_DST, d } }; _activation_func->run(pack); } } void CpuWinogradConv2d::prepare(ITensorPack &tensors) { if(!_is_prepared) { // Permute weights const ITensor *weights = tensors.get_const_tensor(ACL_SRC_1); ITensor *weights_aux = utils::cast::polymorphic_cast(tensors.get_tensor(offset_int_vec(PermutedWeights))); ARM_COMPUTE_ERROR_ON_NULLPTR(weights, weights_aux); CpuAuxTensorHandler permuted_weights(_weights_hwio, *weights_aux); ITensorPack permute_tensors{ { ACL_SRC, weights }, { ACL_DST, permuted_weights.get() } }; _permute_weights->run(permute_tensors); // Transform weights ITensor *weights_transf = utils::cast::polymorphic_cast(tensors.get_tensor(offset_int_vec(TransformedWeights))); ARM_COMPUTE_ERROR_ON_NULLPTR(weights_transf); CpuAuxTensorHandler transformed_weights(_kernel_storage, *weights_transf); ITensorPack transform_tensors{ { ACL_SRC, permuted_weights.get() }, { ACL_DST, transformed_weights.get() } }; NEScheduler::get().schedule_op(_transform_weights_kernel.get(), Window::DimX, _transform_weights_kernel->window(), transform_tensors); ITensorPack gemm_pack = tensors; gemm_pack.add_const_tensor(ACL_SRC_1, transformed_weights.get()); _gemm_function->prepare(gemm_pack); _is_prepared = true; } } experimental::MemoryRequirements CpuWinogradConv2d::workspace() const { return _aux_mem; } } // namespace cpu } // namespace arm_compute