/* * Copyright (c) 2021-2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/cpu/kernels/softmax/generic/neon/impl.h" #include "support/SaturateCast.h" namespace arm_compute { namespace cpu { template void neon_softmax_quantized(const ITensor *in, void *const tmp, ITensor *out, float beta, const Window &window) { static_assert(std::is_same::value || std::is_same::value, "quantized type should be either qasymm8_t or qasymm8_signed_t."); const int input_width = in->info()->valid_region().shape.x(); const float scale_beta = -beta * in->info()->quantization_info().uniform().scale; const float32x4_t scale_beta_vec = vdupq_n_f32(scale_beta); Iterator in_it(in, window); Iterator out_it(out, window); constexpr int vec_size = 16; #ifndef __aarch64__ const int sum_stages = log2(vec_size >> 1); #endif // __aarch64__ using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t; execute_window_loop( window, [&](const Coordinates &) { /* Get pointers */ const T *in_ptr = reinterpret_cast(in_it.ptr()); T *out_ptr = reinterpret_cast(out_it.ptr()); float *tmp_ptr = reinterpret_cast(tmp); T max_val; /* Compute Max */ { // Init max value auto vec_max = wrapper::vdup_n(support::cpp11::lowest(), ExactTagType{}); int x = 0; for (; x <= (input_width - vec_size); x += vec_size) { const auto current_value = wrapper::vloadq(in_ptr + x); vec_max = wrapper::vmax(vec_max, current_value); } #ifdef __aarch64__ max_val = wrapper::vmaxv(vec_max); #else // __aarch64__ auto carry_max = wrapper::vpmax(wrapper::vgethigh(vec_max), wrapper::vgetlow(vec_max)); for (int i = 0; i < sum_stages; ++i) { carry_max = wrapper::vpmax(carry_max, carry_max); } max_val = wrapper::vgetlane(carry_max, 0); #endif // __aarch64__ // Compute left-over elements for (; x < input_width; ++x) { max_val = std::max(*(in_ptr + x), max_val); } } // Compute Max float sum_transformed{}; /* Compute exponentials and sum */ { /* Get max value */ const auto vec_max = wrapper::vdup_n(max_val, wrapper::traits::vector_128_tag{}); /* Init sum to zero */ float32x4x4_t vec_sum = { vdupq_n_f32(0.f), vdupq_n_f32(0.f), vdupq_n_f32(0.f), vdupq_n_f32(0.f), }; /* Loop over row and compute exponentials and sum */ int x = 0; for (; x <= (input_width - vec_size); x += vec_size) { auto vec_elements = wrapper::vloadq(in_ptr + x); vec_elements = wrapper::vqsub(vec_max, vec_elements); float32x4x4_t vec_elements_flt = convert_int_to_float(vec_elements); if (IS_LOG) { vec_elements_flt.val[0] = vmulq_f32(vec_elements_flt.val[0], scale_beta_vec); vec_elements_flt.val[1] = vmulq_f32(vec_elements_flt.val[1], scale_beta_vec); vec_elements_flt.val[2] = vmulq_f32(vec_elements_flt.val[2], scale_beta_vec); vec_elements_flt.val[3] = vmulq_f32(vec_elements_flt.val[3], scale_beta_vec); vec_sum.val[0] = vaddq_f32(vec_sum.val[0], vexpq_f32(vec_elements_flt.val[0])); vec_sum.val[1] = vaddq_f32(vec_sum.val[1], vexpq_f32(vec_elements_flt.val[1])); vec_sum.val[2] = vaddq_f32(vec_sum.val[2], vexpq_f32(vec_elements_flt.val[2])); vec_sum.val[3] = vaddq_f32(vec_sum.val[3], vexpq_f32(vec_elements_flt.val[3])); } else { vec_elements_flt.val[0] = vexpq_f32(vmulq_f32(vec_elements_flt.val[0], scale_beta_vec)); vec_elements_flt.val[1] = vexpq_f32(vmulq_f32(vec_elements_flt.val[1], scale_beta_vec)); vec_elements_flt.val[2] = vexpq_f32(vmulq_f32(vec_elements_flt.val[2], scale_beta_vec)); vec_elements_flt.val[3] = vexpq_f32(vmulq_f32(vec_elements_flt.val[3], scale_beta_vec)); vec_sum.val[0] = vaddq_f32(vec_sum.val[0], vec_elements_flt.val[0]); vec_sum.val[1] = vaddq_f32(vec_sum.val[1], vec_elements_flt.val[1]); vec_sum.val[2] = vaddq_f32(vec_sum.val[2], vec_elements_flt.val[2]); vec_sum.val[3] = vaddq_f32(vec_sum.val[3], vec_elements_flt.val[3]); } vst4q_f32(tmp_ptr + x, vec_elements_flt); } /* Reduce sum */ const float32x4_t sum_16_byte = vaddq_f32(vaddq_f32(vec_sum.val[0], vec_sum.val[1]), vaddq_f32(vec_sum.val[2], vec_sum.val[3])); float sum; #ifdef __aarch64__ sum = wrapper::vaddv(sum_16_byte); #else // __aarch64__ auto sum_res = vpadd_f32(vget_high_f32(sum_16_byte), vget_low_f32(sum_16_byte)); sum_res = vpadd_f32(sum_res, sum_res); sum = wrapper::vgetlane(sum_res, 0); #endif // __aarch64__ /* Run remaining elements */ for (; x < input_width; ++x) { float element{}; if (IS_LOG) { element = (max_val - in_ptr[x]) * scale_beta; sum += std::exp(element); } else { element = std::exp((max_val - in_ptr[x]) * scale_beta); sum += element; } tmp_ptr[x] = element; } if (!IS_LOG) { sum_transformed = 256.f / sum; } else { sum_transformed = std::log(sum); } } // Compute exponentials and sum /* Normalize exponentials */ { constexpr bool is_qasymm8_signed = std::is_same::value; const float32x4_t sum_vec = vdupq_n_f32(sum_transformed); /* Loop over row and compute softmax */ int x = 0; for (; x <= (input_width - vec_size); x += vec_size) { using int_vec_type = wrapper::traits::neon_vector_t; float32x4x4_t vec_in = vld4q_f32(tmp_ptr + x); int_vec_type normalized_value{}; if (IS_LOG) { const float32x4x4_t sub = { vsubq_f32(vec_in.val[0], sum_vec), vsubq_f32(vec_in.val[1], sum_vec), vsubq_f32(vec_in.val[2], sum_vec), vsubq_f32(vec_in.val[3], sum_vec), }; normalized_value = convert_float_to_int(sub); } else { float32x4x4_t mul = { vmulq_f32(vec_in.val[0], sum_vec), vmulq_f32(vec_in.val[1], sum_vec), vmulq_f32(vec_in.val[2], sum_vec), vmulq_f32(vec_in.val[3], sum_vec), }; if (is_qasymm8_signed) { const auto offset_vec = wrapper::vdup_n(128.f, wrapper::traits::vector_128_tag{}); mul.val[0] = wrapper::vsub(mul.val[0], offset_vec); mul.val[1] = wrapper::vsub(mul.val[1], offset_vec); mul.val[2] = wrapper::vsub(mul.val[2], offset_vec); mul.val[3] = wrapper::vsub(mul.val[3], offset_vec); } normalized_value = convert_float_to_int(mul); } wrapper::vstore(out_ptr + x, normalized_value); } /* Run remaining elements */ for (; x < input_width; ++x) { if (IS_LOG) { out_ptr[x] = utils::cast::saturate_cast(tmp_ptr[x] - sum_transformed); } else { out_ptr[x] = utils::cast::saturate_cast((tmp_ptr[x] * sum_transformed) - (is_qasymm8_signed ? 128.f : 0)); } } } // Normalize exponentials }, in_it, out_it); } template void neon_softmax_quantized( const ITensor *in, void *const tmp, ITensor *out, float beta, const Window &window); template void neon_softmax_quantized( const ITensor *in, void *const tmp, ITensor *out, float beta, const Window &window); template void neon_softmax_quantized( const ITensor *in, void *const tmp, ITensor *out, float beta, const Window &window); template void neon_softmax_quantized( const ITensor *in, void *const tmp, ITensor *out, float beta, const Window &window); } // namespace cpu } // namespace arm_compute