/* * Copyright (c) 2021-2022 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/core/helpers/ScaleHelpers.h" #include "src/cpu/kernels/scale/neon/list.h" namespace arm_compute { namespace { void qasymm8_neon_scale_bilinear(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy, BorderMode border_mode, PixelValue constant_border_value, float sampling_offset, bool align_corners, const Window &window) { // Data layout is NHWC const int32_t input_width = src->info()->dimension(1); const int32_t input_height = src->info()->dimension(2); const UniformQuantizationInfo iq_info = src->info()->quantization_info().uniform(); const UniformQuantizationInfo oq_info = dst->info()->quantization_info().uniform(); // Compute the ratio between source and destination dimensions const float scale_x = scale_utils::calculate_resize_ratio(src->info()->dimension(1), dst->info()->dimension(1), align_corners); const float scale_y = scale_utils::calculate_resize_ratio(src->info()->dimension(2), dst->info()->dimension(2), align_corners); if (border_mode == BorderMode::CONSTANT) { const int32_t in_stride_y = src->info()->strides_in_bytes()[1]; const int32_t in_stride_z = src->info()->strides_in_bytes()[2]; // Compute the ratio between source height and destination height Window win_off; win_off.set(Window::DimX, Window::Dimension(0, 0, 0)); win_off.set(Window::DimY, Window::Dimension(0, 0, 0)); // Don't increment in X and Y direction for the input tensor // A pointer to the start of this plane is needed as base for the precomputed offsets Window win_in(window); win_in.set(1, Window::Dimension(0, 0, 0)); win_in.set(2, Window::Dimension(0, 0, 0)); for (size_t d = Window::DimZ; d < offsets->info()->num_dimensions(); ++d) { win_off.set(d, Window::Dimension(0, 0, 0)); } Iterator in(src, win_in); Iterator out(dst, window); const uint8_t const_border_value = static_cast(constant_border_value.get()); execute_window_loop( window, [&](const Coordinates &id) { const int32_t index_h = std::floor((id[2] + sampling_offset) * scale_y - sampling_offset); const int32_t index_w = *(reinterpret_cast(offsets->ptr_to_element(Coordinates(id[1], id[2])))); const auto dx_val = *(reinterpret_cast(dx->ptr_to_element(Coordinates(id[1], id[2])))); const auto dy_val = *(reinterpret_cast(dy->ptr_to_element(Coordinates(id[1], id[2])))); const auto pixel_row_ptr = reinterpret_cast(in.ptr()); const auto a00 = (0 <= index_w && index_w < input_width && 0 <= index_h && index_h < input_height) ? (*(pixel_row_ptr + index_w * in_stride_y + index_h * in_stride_z)) : const_border_value; const auto a01 = (-1 <= index_w && index_w + 1 < input_width && 0 <= index_h && index_h < input_height) ? (*(pixel_row_ptr + (index_w + 1) * in_stride_y + index_h * in_stride_z)) : const_border_value; const auto a10 = (0 <= index_w && index_w < input_width && -1 <= index_h && index_h < input_height - 1) ? (*(pixel_row_ptr + index_w * in_stride_y + (index_h + 1) * in_stride_z)) : const_border_value; const auto a11 = (-1 <= index_w && index_w < input_width - 1 && -1 <= index_h && index_h < input_height - 1) ? (*(pixel_row_ptr + (index_w + 1) * in_stride_y + (index_h + 1) * in_stride_z)) : const_border_value; const float inp00 = Qasymm8QuantizationHelper::dequantize(a00, iq_info); const float inp01 = Qasymm8QuantizationHelper::dequantize(a01, iq_info); const float inp10 = Qasymm8QuantizationHelper::dequantize(a10, iq_info); const float inp11 = Qasymm8QuantizationHelper::dequantize(a11, iq_info); *reinterpret_cast(out.ptr()) = Qasymm8QuantizationHelper::quantize( scale_helpers::delta_bilinear(inp00, inp01, inp10, inp11, dx_val, dy_val), oq_info); }, in, out); } else if (border_mode == BorderMode::REPLICATE) { using FloatTagType = typename wrapper::traits::neon_bitvector_tag_t; using Int32TagType = typename wrapper::traits::neon_bitvector_tag_t; const int in_stride_x = src->info()->strides_in_bytes()[1]; const int in_stride_y = src->info()->strides_in_bytes()[2]; const int in_stride_b = src->info()->strides_in_bytes()[3]; const int out_stride_x = dst->info()->strides_in_bytes()[1]; const int out_stride_y = dst->info()->strides_in_bytes()[2]; const int out_stride_b = dst->info()->strides_in_bytes()[3]; const int out_dim_ch = dst->info()->dimension(0); constexpr int step_cout = 16; Window window_execution = window; window_execution.set(Window::DimX, Window::Dimension(0, 1, 1)); Window win_in_out(window); win_in_out.set(Window::DimY, Window::Dimension(0, 0, 0)); win_in_out.set(Window::DimZ, Window::Dimension(0, 0, 0)); Iterator in(src, win_in_out); Iterator out(dst, win_in_out); const int xo_start = window_execution[1].start(); const int xo_end = window_execution[1].end(); const int xo_step = window_execution[1].step(); const int yo_start = window_execution[2].start(); const int yo_end = window_execution[2].end(); const int yo_step = window_execution[2].step(); const int bo_start = window_execution[3].start(); const int bo_end = window_execution[3].end(); const int bo_step = window_execution[3].step(); const UniformQuantizationInfo iq_info = src->info()->quantization_info().uniform(); const UniformQuantizationInfo oq_info = dst->info()->quantization_info().uniform(); const float32x4_t vscale_in = wrapper::vdup_n(iq_info.scale, FloatTagType{}); const int32x4_t voffset_in = wrapper::vdup_n(iq_info.offset, Int32TagType{}); // Offsets will be Int32 const float32x4_t invvscale_o = wrapper::vdup_n(1.f / oq_info.scale, FloatTagType{}); const float32x4_t voffset_o = vdupq_n_f32(oq_info.offset); const float fp_coord_offset_y = sampling_offset * (scale_y - 1); const float fp_coord_offset_x = sampling_offset * (scale_x - 1); for (int bo = bo_start; bo < bo_end; bo += bo_step) { const uint8_t *in_ptr = in.ptr() + bo * in_stride_b; uint8_t *out_ptr = out.ptr() + bo * out_stride_b; for (int yo = yo_start; yo < yo_end; yo += yo_step) { // Floating-point coordinate const float yi_f = yo * scale_y + fp_coord_offset_y; // Integer coordinate const int yi = static_cast(std::floor(yi_f)); // Weight for the y coordinate const float a1 = (yi_f - static_cast(yi)); const float b1 = (1.f - a1); const int yi0 = utility::clamp(yi, 0, input_height - 1); const int yi1 = utility::clamp(yi + 1, 0, input_height - 1); const uint8_t *in_ptr_yi0 = in_ptr + yi0 * in_stride_y; const uint8_t *in_ptr_yi1 = in_ptr + yi1 * in_stride_y; uint8_t *out_ptr_yo = out_ptr + yo * out_stride_y; for (int xo = xo_start; xo < xo_end; xo += xo_step) { // Floating-point coordinate const float xi_f = xo * scale_x + fp_coord_offset_x; // Integer coordinate const int xi = static_cast(std::floor(xi_f)); // Weight for the x coordinate const float a = (xi_f - static_cast(xi)); const float b = (1.f - a); const float s00_s = b * b1; const float s01_s = a * b1; const float s10_s = b * a1; const float s11_s = a * a1; const auto s00 = wrapper::vdup_n(s00_s, FloatTagType{}); const auto s01 = wrapper::vdup_n(s01_s, FloatTagType{}); const auto s10 = wrapper::vdup_n(s10_s, FloatTagType{}); const auto s11 = wrapper::vdup_n(s11_s, FloatTagType{}); const int xi0 = utility::clamp(xi, 0, input_width - 1); const int xi1 = utility::clamp(xi + 1, 0, input_width - 1); const auto in_ptr_xi0_yi0 = in_ptr_yi0 + xi0 * in_stride_x; const auto in_ptr_xi1_yi0 = in_ptr_yi0 + xi1 * in_stride_x; const auto in_ptr_xi0_yi1 = in_ptr_yi1 + xi0 * in_stride_x; const auto in_ptr_xi1_yi1 = in_ptr_yi1 + xi1 * in_stride_x; uint8_t *out_ptr_xo_yo = out_ptr_yo + xo * out_stride_x; int cout = 0; for (; cout <= (out_dim_ch - step_cout); cout += step_cout) { const auto in00 = wrapper::vloadq(in_ptr_xi0_yi0 + cout * sizeof(uint8_t)); const auto in01 = wrapper::vloadq(in_ptr_xi1_yi0 + cout * sizeof(uint8_t)); const auto in10 = wrapper::vloadq(in_ptr_xi0_yi1 + cout * sizeof(uint8_t)); const auto in11 = wrapper::vloadq(in_ptr_xi1_yi1 + cout * sizeof(uint8_t)); const uint16x8_t in00_low = wrapper::vmovl(wrapper::vgetlow(in00)); const uint16x8_t in00_high = wrapper::vmovl(wrapper::vgethigh(in00)); const auto in00_0 = wrapper::vmul( wrapper::vcvt(wrapper::vsub( wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(in00_low))), voffset_in)), vscale_in); const auto in00_1 = wrapper::vmul( wrapper::vcvt(wrapper::vsub( wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(in00_low))), voffset_in)), vscale_in); const auto in00_2 = wrapper::vmul( wrapper::vcvt(wrapper::vsub( wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(in00_high))), voffset_in)), vscale_in); const auto in00_3 = wrapper::vmul( wrapper::vcvt(wrapper::vsub( wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(in00_high))), voffset_in)), vscale_in); const uint16x8_t in01_low = wrapper::vmovl(wrapper::vgetlow(in01)); const uint16x8_t in01_high = wrapper::vmovl(wrapper::vgethigh(in01)); const auto in01_0 = wrapper::vmul( wrapper::vcvt(wrapper::vsub( wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(in01_low))), voffset_in)), vscale_in); const auto in01_1 = wrapper::vmul( wrapper::vcvt(wrapper::vsub( wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(in01_low))), voffset_in)), vscale_in); const auto in01_2 = wrapper::vmul( wrapper::vcvt(wrapper::vsub( wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(in01_high))), voffset_in)), vscale_in); const auto in01_3 = wrapper::vmul( wrapper::vcvt(wrapper::vsub( wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(in01_high))), voffset_in)), vscale_in); const uint16x8_t in10_low = wrapper::vmovl(wrapper::vgetlow(in10)); const uint16x8_t in10_high = wrapper::vmovl(wrapper::vgethigh(in10)); const auto in10_0 = wrapper::vmul( wrapper::vcvt(wrapper::vsub( wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(in10_low))), voffset_in)), vscale_in); const auto in10_1 = wrapper::vmul( wrapper::vcvt(wrapper::vsub( wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(in10_low))), voffset_in)), vscale_in); const auto in10_2 = wrapper::vmul( wrapper::vcvt(wrapper::vsub( wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(in10_high))), voffset_in)), vscale_in); const auto in10_3 = wrapper::vmul( wrapper::vcvt(wrapper::vsub( wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(in10_high))), voffset_in)), vscale_in); const uint16x8_t in11_low = wrapper::vmovl(wrapper::vgetlow(in11)); const uint16x8_t in11_high = wrapper::vmovl(wrapper::vgethigh(in11)); const auto in11_0 = wrapper::vmul( wrapper::vcvt(wrapper::vsub( wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(in11_low))), voffset_in)), vscale_in); const auto in11_1 = wrapper::vmul( wrapper::vcvt(wrapper::vsub( wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(in11_low))), voffset_in)), vscale_in); const auto in11_2 = wrapper::vmul( wrapper::vcvt(wrapper::vsub( wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(in11_high))), voffset_in)), vscale_in); const auto in11_3 = wrapper::vmul( wrapper::vcvt(wrapper::vsub( wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(in11_high))), voffset_in)), vscale_in); auto out_0 = wrapper::vmul(in00_0, s00); out_0 = wrapper::vmla(out_0, in01_0, s01); out_0 = wrapper::vmla(out_0, in10_0, s10); out_0 = wrapper::vmla(out_0, in11_0, s11); auto out_1 = wrapper::vmul(in00_1, s00); out_1 = wrapper::vmla(out_1, in01_1, s01); out_1 = wrapper::vmla(out_1, in10_1, s10); out_1 = wrapper::vmla(out_1, in11_1, s11); auto out_2 = wrapper::vmul(in00_2, s00); out_2 = wrapper::vmla(out_2, in01_2, s01); out_2 = wrapper::vmla(out_2, in10_2, s10); out_2 = wrapper::vmla(out_2, in11_2, s11); auto out_3 = wrapper::vmul(in00_3, s00); out_3 = wrapper::vmla(out_3, in01_3, s01); out_3 = wrapper::vmla(out_3, in10_3, s10); out_3 = wrapper::vmla(out_3, in11_3, s11); #if defined(__aarch64__) && !defined(BARE_METAL) const auto out_0_int = wrapper::vcvta(wrapper::vmla(voffset_o, out_0, invvscale_o)); const auto out_1_int = wrapper::vcvta(wrapper::vmla(voffset_o, out_1, invvscale_o)); const auto out_2_int = wrapper::vcvta(wrapper::vmla(voffset_o, out_2, invvscale_o)); const auto out_3_int = wrapper::vcvta(wrapper::vmla(voffset_o, out_3, invvscale_o)); #else // defined(__aarch64__) && !defined(BARE_METAL) const auto out_0_int = wrapper::vcvt(wrapper::vmla(voffset_o, out_0, invvscale_o)); const auto out_1_int = wrapper::vcvt(wrapper::vmla(voffset_o, out_1, invvscale_o)); const auto out_2_int = wrapper::vcvt(wrapper::vmla(voffset_o, out_2, invvscale_o)); const auto out_3_int = wrapper::vcvt(wrapper::vmla(voffset_o, out_3, invvscale_o)); #endif // defined(__aarch64__) && !defined(BARE_METAL) const auto low_part = wrapper::vqmovn(wrapper::vcombine(wrapper::vqmovn(out_0_int), wrapper::vqmovn(out_1_int))); const auto high_part = wrapper::vqmovn(wrapper::vcombine(wrapper::vqmovn(out_2_int), wrapper::vqmovn(out_3_int))); const auto out = wrapper::vcombine(low_part, high_part); wrapper::vstore(out_ptr_xo_yo + cout * sizeof(uint8_t), out); } for (; cout < out_dim_ch; ++cout) { const uint8_t in00 = *(in_ptr_xi0_yi0 + cout * sizeof(uint8_t)); const uint8_t in01 = *(in_ptr_xi1_yi0 + cout * sizeof(uint8_t)); const uint8_t in10 = *(in_ptr_xi0_yi1 + cout * sizeof(uint8_t)); const uint8_t in11 = *(in_ptr_xi1_yi1 + cout * sizeof(uint8_t)); const float in00_f = (static_cast(in00) - iq_info.offset) * iq_info.scale; const float in01_f = (static_cast(in01) - iq_info.offset) * iq_info.scale; const float in10_f = (static_cast(in10) - iq_info.offset) * iq_info.scale; const float in11_f = (static_cast(in11) - iq_info.offset) * iq_info.scale; float out = in00_f * s00_s; out += in01_f * s01_s; out += in10_f * s10_s; out += in11_f * s11_s; // Rounding modes of vector and scalar loops should match #if defined(__aarch64__) && !defined(BARE_METAL) *(out_ptr_xo_yo + cout * sizeof(uint8_t)) = quantize_qasymm8(out, oq_info); #else // defined(__aarch64__) && !defined(BARE_METAL) *(out_ptr_xo_yo + cout * sizeof(uint8_t)) = quantize_qasymm8(out, oq_info, RoundingPolicy::TO_ZERO); #endif // defined(__aarch64__) && !defined(BARE_METAL) } } } } } else { ARM_COMPUTE_ERROR("Not implemented"); } } } // namespace namespace cpu { void qasymm8_neon_scale(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy, InterpolationPolicy policy, BorderMode border_mode, PixelValue constant_border_value, float sampling_offset, bool align_corners, const Window &window) { if (policy == InterpolationPolicy::BILINEAR) { if (src->info()->quantization_info() == dst->info()->quantization_info()) { u8_neon_scale(src, dst, offsets, dx, dy, policy, border_mode, constant_border_value, sampling_offset, align_corners, window); } else { qasymm8_neon_scale_bilinear(src, dst, offsets, dx, dy, border_mode, constant_border_value, sampling_offset, align_corners, window); } } else if (policy == InterpolationPolicy::NEAREST_NEIGHBOR) { nearest_neon_scale(src, dst, offsets, sampling_offset, align_corners, window); } } } // namespace cpu } // namespace arm_compute