/* * Copyright (c) 2021-2022 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/Helpers.h" #include "src/core/helpers/ScaleHelpers.h" #include "src/core/NEON/wrapper/wrapper.h" #include "src/core/utils/ScaleUtils.h" #include "support/Rounding.h" #include namespace arm_compute { namespace { void u8_neon_scale_nearest(const ITensor *src, ITensor *dst, const ITensor *offsets, float sampling_offset, bool align_corners, const Window &window) { const size_t in_stride_c = src->info()->dimension(0) + src->info()->padding().left + src->info()->padding().right; const size_t in_stride_w = src->info()->dimension(1) + src->info()->padding().top + src->info()->padding().bottom; const size_t in_stride_wc = in_stride_w * in_stride_c; const size_t in_dim_h = src->info()->dimension(2); // Compute the ratio between source height and destination height const auto hr = scale_utils::calculate_resize_ratio(in_dim_h, dst->info()->dimension(2), align_corners); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const int window_step_x = 16; Window win(window); win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator out(dst, win); const uint8_t *in_ptr_start = src->buffer() + src->info()->offset_first_element_in_bytes(); const unsigned int in_stride_bytes_hwc = src->info()->strides_in_bytes()[3]; execute_window_loop( win, [&](const Coordinates &id) { const int32_t offset = *reinterpret_cast(offsets->ptr_to_element(Coordinates(id.y(), id.z()))) * in_stride_c; const auto in_hi = static_cast( align_corners ? utils::rounding::round_half_away_from_zero((id.z() + sampling_offset) * hr) : std::floor((id.z() + sampling_offset) * hr)); const int offset_row = in_hi * in_stride_wc; int32_t x = window_start_x; const uint8_t *in_ptr = reinterpret_cast(in_ptr_start + in_stride_bytes_hwc * id[3]); for (; x <= window_end_x - window_step_x; x += window_step_x) { wrapper::vstore(reinterpret_cast(out.ptr()) + x, wrapper::vloadq(in_ptr + offset + offset_row + x)); } for (; x < window_end_x; ++x) { *(reinterpret_cast(out.ptr()) + x) = *(in_ptr + offset + offset_row + x); } }, out); } void u8_neon_scale_bilinear(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy, BorderMode border_mode, PixelValue constant_border_value, float sampling_offset, bool align_corners, const Window &window) { // Compute the ratio between source and destination dimensions const float scale_x = scale_utils::calculate_resize_ratio(src->info()->dimension(1), dst->info()->dimension(1), align_corners); const float scale_y = scale_utils::calculate_resize_ratio(src->info()->dimension(2), dst->info()->dimension(2), align_corners); const int input_width = src->info()->dimension(1); const int input_height = src->info()->dimension(2); if (border_mode == BorderMode::CONSTANT) { Iterator out(dst, window); const int in_stride_c = src->info()->dimension(0) + src->info()->padding().left + src->info()->padding().right; const int in_stride_wc = in_stride_c * (input_width + src->info()->padding().top + src->info()->padding().bottom); // Don't increment in Y and Z direction for the input tensor // A pointer to the start of this plane is needed as base for the precomputed offsets Window win_in(window); win_in.set(Window::DimY, Window::Dimension(0, 0, 0)); win_in.set(Window::DimZ, Window::Dimension(0, 0, 0)); Iterator in(src, win_in); const uint8_t const_border_value = static_cast(constant_border_value.get()); execute_window_loop( window, [&](const Coordinates &id) { const auto offset = *reinterpret_cast(offsets->ptr_to_element(Coordinates(id.y(), id.z()))); const auto dx_val = *reinterpret_cast(dx->ptr_to_element(Coordinates(id.y(), id.z()))); const auto dy_val = *reinterpret_cast(dy->ptr_to_element(Coordinates(id.y(), id.z()))); const int32_t in_hi = std::floor((id.z() + sampling_offset) * scale_y - sampling_offset); const uint8_t *in_ptr = reinterpret_cast(in.ptr()) + offset * in_stride_c + in_hi * in_stride_wc; const auto a00 = (0 <= offset && offset < input_width && 0 <= in_hi && in_hi < input_height) ? *in_ptr : const_border_value; const auto a01 = (-1 <= offset && offset < input_width - 1 && 0 <= in_hi && in_hi < input_height) ? *(in_ptr + in_stride_c) : const_border_value; const auto a10 = (0 <= offset && offset < input_width && -1 <= in_hi && in_hi < input_height - 1) ? *(in_ptr + in_stride_wc) : const_border_value; const auto a11 = (-1 <= offset && offset < input_width - 1 && -1 <= in_hi && in_hi < input_height - 1) ? *(in_ptr + in_stride_c + in_stride_wc) : const_border_value; *reinterpret_cast(out.ptr()) = static_cast(scale_helpers::delta_bilinear(a00, a01, a10, a11, dx_val, dy_val)); }, in, out); } else if (border_mode == BorderMode::REPLICATE) { using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t; const int in_stride_x = src->info()->strides_in_bytes()[1]; const int in_stride_y = src->info()->strides_in_bytes()[2]; const int in_stride_b = src->info()->strides_in_bytes()[3]; const int out_stride_x = dst->info()->strides_in_bytes()[1]; const int out_stride_y = dst->info()->strides_in_bytes()[2]; const int out_stride_b = dst->info()->strides_in_bytes()[3]; const int out_dim_ch = dst->info()->dimension(0); constexpr int step_cout = 16; Window window_execution = window; window_execution.set(Window::DimX, Window::Dimension(0, 1, 1)); Window win_in_out(window); win_in_out.set(Window::DimY, Window::Dimension(0, 0, 0)); win_in_out.set(Window::DimZ, Window::Dimension(0, 0, 0)); Iterator in(src, win_in_out); Iterator out(dst, win_in_out); const int xo_start = window_execution[1].start(); const int xo_end = window_execution[1].end(); const int xo_step = window_execution[1].step(); const int yo_start = window_execution[2].start(); const int yo_end = window_execution[2].end(); const int yo_step = window_execution[2].step(); const int bo_start = window_execution[3].start(); const int bo_end = window_execution[3].end(); const int bo_step = window_execution[3].step(); const float fp_coord_offset_y = sampling_offset * (scale_y - 1); const float fp_coord_offset_x = sampling_offset * (scale_x - 1); for (int bo = bo_start; bo < bo_end; bo += bo_step) { const uint8_t *in_ptr = in.ptr() + bo * in_stride_b; uint8_t *out_ptr = out.ptr() + bo * out_stride_b; for (int yo = yo_start; yo < yo_end; yo += yo_step) { // Floating-point coordinate const float yi_f = yo * scale_y + fp_coord_offset_y; // Integer coordinate const int yi = static_cast(std::floor(yi_f)); // Weight for the y coordinate const float a1 = (yi_f - static_cast(yi)); const float b1 = (1.f - a1); const int yi0 = utility::clamp(yi, 0, input_height - 1); const int yi1 = utility::clamp(yi + 1, 0, input_height - 1); const uint8_t *in_ptr_yi0 = in_ptr + yi0 * in_stride_y; const uint8_t *in_ptr_yi1 = in_ptr + yi1 * in_stride_y; uint8_t *out_ptr_yo = out_ptr + yo * out_stride_y; for (int xo = xo_start; xo < xo_end; xo += xo_step) { // Floating-point coordinate const float xi_f = xo * scale_x + fp_coord_offset_x; // Integer coordinate const int xi = static_cast(std::floor(xi_f)); // Weight for the x coordinate const float a = (xi_f - static_cast(xi)); const float b = (1.f - a); const float s00_s = b * b1; const float s01_s = a * b1; const float s10_s = b * a1; const float s11_s = a * a1; const auto s00 = wrapper::vdup_n(s00_s, ExactTagType{}); const auto s01 = wrapper::vdup_n(s01_s, ExactTagType{}); const auto s10 = wrapper::vdup_n(s10_s, ExactTagType{}); const auto s11 = wrapper::vdup_n(s11_s, ExactTagType{}); const int xi0 = utility::clamp(xi, 0, input_width - 1); const int xi1 = utility::clamp(xi + 1, 0, input_width - 1); const auto in_ptr_xi0_yi0 = in_ptr_yi0 + xi0 * in_stride_x; const auto in_ptr_xi1_yi0 = in_ptr_yi0 + xi1 * in_stride_x; const auto in_ptr_xi0_yi1 = in_ptr_yi1 + xi0 * in_stride_x; const auto in_ptr_xi1_yi1 = in_ptr_yi1 + xi1 * in_stride_x; uint8_t *out_ptr_xo_yo = out_ptr_yo + xo * out_stride_x; int cout = 0; for (; cout <= (out_dim_ch - step_cout); cout += step_cout) { const auto in00 = wrapper::vloadq(in_ptr_xi0_yi0 + cout * sizeof(uint8_t)); const auto in01 = wrapper::vloadq(in_ptr_xi1_yi0 + cout * sizeof(uint8_t)); const auto in10 = wrapper::vloadq(in_ptr_xi0_yi1 + cout * sizeof(uint8_t)); const auto in11 = wrapper::vloadq(in_ptr_xi1_yi1 + cout * sizeof(uint8_t)); const uint16x8_t in00_low = wrapper::vmovl(wrapper::vgetlow(in00)); const uint16x8_t in00_high = wrapper::vmovl(wrapper::vgethigh(in00)); const auto in00_0 = wrapper::vcvt(wrapper::vmovl(wrapper::vgetlow(in00_low))); const auto in00_1 = wrapper::vcvt(wrapper::vmovl(wrapper::vgethigh(in00_low))); const auto in00_2 = wrapper::vcvt(wrapper::vmovl(wrapper::vgetlow(in00_high))); const auto in00_3 = wrapper::vcvt(wrapper::vmovl(wrapper::vgethigh(in00_high))); const uint16x8_t in01_low = wrapper::vmovl(wrapper::vgetlow(in01)); const uint16x8_t in01_high = wrapper::vmovl(wrapper::vgethigh(in01)); const auto in01_0 = wrapper::vcvt(wrapper::vmovl(wrapper::vgetlow(in01_low))); const auto in01_1 = wrapper::vcvt(wrapper::vmovl(wrapper::vgethigh(in01_low))); const auto in01_2 = wrapper::vcvt(wrapper::vmovl(wrapper::vgetlow(in01_high))); const auto in01_3 = wrapper::vcvt(wrapper::vmovl(wrapper::vgethigh(in01_high))); const uint16x8_t in10_low = wrapper::vmovl(wrapper::vgetlow(in10)); const uint16x8_t in10_high = wrapper::vmovl(wrapper::vgethigh(in10)); const auto in10_0 = wrapper::vcvt(wrapper::vmovl(wrapper::vgetlow(in10_low))); const auto in10_1 = wrapper::vcvt(wrapper::vmovl(wrapper::vgethigh(in10_low))); const auto in10_2 = wrapper::vcvt(wrapper::vmovl(wrapper::vgetlow(in10_high))); const auto in10_3 = wrapper::vcvt(wrapper::vmovl(wrapper::vgethigh(in10_high))); const uint16x8_t in11_low = wrapper::vmovl(wrapper::vgetlow(in11)); const uint16x8_t in11_high = wrapper::vmovl(wrapper::vgethigh(in11)); const auto in11_0 = wrapper::vcvt(wrapper::vmovl(wrapper::vgetlow(in11_low))); const auto in11_1 = wrapper::vcvt(wrapper::vmovl(wrapper::vgethigh(in11_low))); const auto in11_2 = wrapper::vcvt(wrapper::vmovl(wrapper::vgetlow(in11_high))); const auto in11_3 = wrapper::vcvt(wrapper::vmovl(wrapper::vgethigh(in11_high))); auto out_0 = wrapper::vmul(in00_0, s00); out_0 = wrapper::vmla(out_0, in01_0, s01); out_0 = wrapper::vmla(out_0, in10_0, s10); out_0 = wrapper::vmla(out_0, in11_0, s11); auto out_1 = wrapper::vmul(in00_1, s00); out_1 = wrapper::vmla(out_1, in01_1, s01); out_1 = wrapper::vmla(out_1, in10_1, s10); out_1 = wrapper::vmla(out_1, in11_1, s11); auto out_2 = wrapper::vmul(in00_2, s00); out_2 = wrapper::vmla(out_2, in01_2, s01); out_2 = wrapper::vmla(out_2, in10_2, s10); out_2 = wrapper::vmla(out_2, in11_2, s11); auto out_3 = wrapper::vmul(in00_3, s00); out_3 = wrapper::vmla(out_3, in01_3, s01); out_3 = wrapper::vmla(out_3, in10_3, s10); out_3 = wrapper::vmla(out_3, in11_3, s11); #if defined(__aarch64__) && !defined(BARE_METAL) const auto out_0_int = wrapper::vcvta(out_0); const auto out_1_int = wrapper::vcvta(out_1); const auto out_2_int = wrapper::vcvta(out_2); const auto out_3_int = wrapper::vcvta(out_3); #else // defined(__aarch64__) && !defined(BARE_METAL) const auto out_0_int = wrapper::vcvt(out_0); const auto out_1_int = wrapper::vcvt(out_1); const auto out_2_int = wrapper::vcvt(out_2); const auto out_3_int = wrapper::vcvt(out_3); #endif // defined(__aarch64__) && !defined(BARE_METAL) const auto low_part = wrapper::vqmovn(wrapper::vcombine(wrapper::vqmovn(out_0_int), wrapper::vqmovn(out_1_int))); const auto high_part = wrapper::vqmovn(wrapper::vcombine(wrapper::vqmovn(out_2_int), wrapper::vqmovn(out_3_int))); const auto out = wrapper::vcombine(low_part, high_part); wrapper::vstore(out_ptr_xo_yo + cout * sizeof(uint8_t), out); } for (; cout < out_dim_ch; ++cout) { const uint8_t in00 = *(in_ptr_xi0_yi0 + cout * sizeof(uint8_t)); const uint8_t in01 = *(in_ptr_xi1_yi0 + cout * sizeof(uint8_t)); const uint8_t in10 = *(in_ptr_xi0_yi1 + cout * sizeof(uint8_t)); const uint8_t in11 = *(in_ptr_xi1_yi1 + cout * sizeof(uint8_t)); float out0 = in00 * s00_s; out0 += in01 * s01_s; out0 += in10 * s10_s; out0 += in11 * s11_s; // Rounding modes of vector and scalar loops should match #if defined(__aarch64__) && !defined(BARE_METAL) *(out_ptr_xo_yo + cout * sizeof(uint8_t)) = static_cast(std::round(out0)); #else // defined(__aarch64__) && !defined(BARE_METAL) *(out_ptr_xo_yo + cout * sizeof(uint8_t)) = static_cast(out0); #endif // defined(__aarch64__) && !defined(BARE_METAL) } } } } } else { ARM_COMPUTE_ERROR("Not implemented"); } } void s8_neon_scale_bilinear(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy, BorderMode border_mode, PixelValue constant_border_value, float sampling_offset, bool align_corners, const Window &window) { ARM_COMPUTE_UNUSED(dx, dy, offsets, constant_border_value); if (border_mode == BorderMode::REPLICATE) { using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t; // Compute the ratio between source and destination dimensions const float scale_x = scale_utils::calculate_resize_ratio(src->info()->dimension(1), dst->info()->dimension(1), align_corners); const float scale_y = scale_utils::calculate_resize_ratio(src->info()->dimension(2), dst->info()->dimension(2), align_corners); const int in_stride_x = src->info()->strides_in_bytes()[1]; const int in_stride_y = src->info()->strides_in_bytes()[2]; const int in_stride_b = src->info()->strides_in_bytes()[3]; const int out_stride_x = dst->info()->strides_in_bytes()[1]; const int out_stride_y = dst->info()->strides_in_bytes()[2]; const int out_stride_b = dst->info()->strides_in_bytes()[3]; const int input_width = src->info()->dimension(1); const int input_height = src->info()->dimension(2); const int out_dim_ch = dst->info()->dimension(0); constexpr int step_cout = 16; Window window_execution = window; window_execution.set(Window::DimX, Window::Dimension(0, 1, 1)); Window win_in_out(window); win_in_out.set(Window::DimY, Window::Dimension(0, 0, 0)); win_in_out.set(Window::DimZ, Window::Dimension(0, 0, 0)); Iterator in(src, win_in_out); Iterator out(dst, win_in_out); const int xo_start = window_execution[1].start(); const int xo_end = window_execution[1].end(); const int xo_step = window_execution[1].step(); const int yo_start = window_execution[2].start(); const int yo_end = window_execution[2].end(); const int yo_step = window_execution[2].step(); const int bo_start = window_execution[3].start(); const int bo_end = window_execution[3].end(); const int bo_step = window_execution[3].step(); const float fp_coord_offset_y = sampling_offset * (scale_y - 1); const float fp_coord_offset_x = sampling_offset * (scale_x - 1); for (int bo = bo_start; bo < bo_end; bo += bo_step) { const int8_t *in_ptr = reinterpret_cast(in.ptr() + bo * in_stride_b); int8_t *out_ptr = reinterpret_cast(out.ptr() + bo * out_stride_b); for (int yo = yo_start; yo < yo_end; yo += yo_step) { // Floating-point coordinate const float yi_f = yo * scale_y + fp_coord_offset_y; // Integer coordinate const int yi = static_cast(std::floor(yi_f)); // Weight for the y coordinate const float a1 = (yi_f - static_cast(yi)); const float b1 = (1.f - a1); const int yi0 = utility::clamp(yi, 0, input_height - 1); const int yi1 = utility::clamp(yi + 1, 0, input_height - 1); const int8_t *in_ptr_yi0 = in_ptr + yi0 * in_stride_y; const int8_t *in_ptr_yi1 = in_ptr + yi1 * in_stride_y; int8_t *out_ptr_yo = out_ptr + yo * out_stride_y; for (int xo = xo_start; xo < xo_end; xo += xo_step) { // Floating-point coordinate const float xi_f = xo * scale_x + fp_coord_offset_x; // Integer coordinate const int xi = static_cast(std::floor(xi_f)); // Weight for the x coordinate const float a = (xi_f - static_cast(xi)); const float b = (1.f - a); const float s00_s = b * b1; const float s01_s = a * b1; const float s10_s = b * a1; const float s11_s = a * a1; const auto s00 = wrapper::vdup_n(s00_s, ExactTagType{}); const auto s01 = wrapper::vdup_n(s01_s, ExactTagType{}); const auto s10 = wrapper::vdup_n(s10_s, ExactTagType{}); const auto s11 = wrapper::vdup_n(s11_s, ExactTagType{}); const int xi0 = utility::clamp(xi, 0, input_width - 1); const int xi1 = utility::clamp(xi + 1, 0, input_width - 1); const auto in_ptr_xi0_yi0 = in_ptr_yi0 + xi0 * in_stride_x; const auto in_ptr_xi1_yi0 = in_ptr_yi0 + xi1 * in_stride_x; const auto in_ptr_xi0_yi1 = in_ptr_yi1 + xi0 * in_stride_x; const auto in_ptr_xi1_yi1 = in_ptr_yi1 + xi1 * in_stride_x; int8_t *out_ptr_xo_yo = out_ptr_yo + xo * out_stride_x; int cout = 0; for (; cout <= (out_dim_ch - step_cout); cout += step_cout) { const auto in00 = wrapper::vloadq(in_ptr_xi0_yi0 + cout * sizeof(int8_t)); const auto in01 = wrapper::vloadq(in_ptr_xi1_yi0 + cout * sizeof(int8_t)); const auto in10 = wrapper::vloadq(in_ptr_xi0_yi1 + cout * sizeof(int8_t)); const auto in11 = wrapper::vloadq(in_ptr_xi1_yi1 + cout * sizeof(int8_t)); const int16x8_t in00_low = wrapper::vmovl(wrapper::vgetlow(in00)); const int16x8_t in00_high = wrapper::vmovl(wrapper::vgethigh(in00)); const auto in00_0 = wrapper::vcvt(wrapper::vmovl(wrapper::vgetlow(in00_low))); const auto in00_1 = wrapper::vcvt(wrapper::vmovl(wrapper::vgethigh(in00_low))); const auto in00_2 = wrapper::vcvt(wrapper::vmovl(wrapper::vgetlow(in00_high))); const auto in00_3 = wrapper::vcvt(wrapper::vmovl(wrapper::vgethigh(in00_high))); const int16x8_t in01_low = wrapper::vmovl(wrapper::vgetlow(in01)); const int16x8_t in01_high = wrapper::vmovl(wrapper::vgethigh(in01)); const auto in01_0 = wrapper::vcvt(wrapper::vmovl(wrapper::vgetlow(in01_low))); const auto in01_1 = wrapper::vcvt(wrapper::vmovl(wrapper::vgethigh(in01_low))); const auto in01_2 = wrapper::vcvt(wrapper::vmovl(wrapper::vgetlow(in01_high))); const auto in01_3 = wrapper::vcvt(wrapper::vmovl(wrapper::vgethigh(in01_high))); const int16x8_t in10_low = wrapper::vmovl(wrapper::vgetlow(in10)); const int16x8_t in10_high = wrapper::vmovl(wrapper::vgethigh(in10)); const auto in10_0 = wrapper::vcvt(wrapper::vmovl(wrapper::vgetlow(in10_low))); const auto in10_1 = wrapper::vcvt(wrapper::vmovl(wrapper::vgethigh(in10_low))); const auto in10_2 = wrapper::vcvt(wrapper::vmovl(wrapper::vgetlow(in10_high))); const auto in10_3 = wrapper::vcvt(wrapper::vmovl(wrapper::vgethigh(in10_high))); const int16x8_t in11_low = wrapper::vmovl(wrapper::vgetlow(in11)); const int16x8_t in11_high = wrapper::vmovl(wrapper::vgethigh(in11)); const auto in11_0 = wrapper::vcvt(wrapper::vmovl(wrapper::vgetlow(in11_low))); const auto in11_1 = wrapper::vcvt(wrapper::vmovl(wrapper::vgethigh(in11_low))); const auto in11_2 = wrapper::vcvt(wrapper::vmovl(wrapper::vgetlow(in11_high))); const auto in11_3 = wrapper::vcvt(wrapper::vmovl(wrapper::vgethigh(in11_high))); auto out_0 = wrapper::vmul(in00_0, s00); out_0 = wrapper::vmla(out_0, in01_0, s01); out_0 = wrapper::vmla(out_0, in10_0, s10); out_0 = wrapper::vmla(out_0, in11_0, s11); auto out_1 = wrapper::vmul(in00_1, s00); out_1 = wrapper::vmla(out_1, in01_1, s01); out_1 = wrapper::vmla(out_1, in10_1, s10); out_1 = wrapper::vmla(out_1, in11_1, s11); auto out_2 = wrapper::vmul(in00_2, s00); out_2 = wrapper::vmla(out_2, in01_2, s01); out_2 = wrapper::vmla(out_2, in10_2, s10); out_2 = wrapper::vmla(out_2, in11_2, s11); auto out_3 = wrapper::vmul(in00_3, s00); out_3 = wrapper::vmla(out_3, in01_3, s01); out_3 = wrapper::vmla(out_3, in10_3, s10); out_3 = wrapper::vmla(out_3, in11_3, s11); #if defined(__aarch64__) && !defined(BARE_METAL) const auto out_0_int = wrapper::vcvta(out_0); const auto out_1_int = wrapper::vcvta(out_1); const auto out_2_int = wrapper::vcvta(out_2); const auto out_3_int = wrapper::vcvta(out_3); #else // defined(__aarch64__) && !defined(BARE_METAL) const auto out_0_int = wrapper::vcvt(out_0); const auto out_1_int = wrapper::vcvt(out_1); const auto out_2_int = wrapper::vcvt(out_2); const auto out_3_int = wrapper::vcvt(out_3); #endif // defined(__aarch64__) && !defined(BARE_METAL) const auto low_part = wrapper::vqmovn(wrapper::vcombine(wrapper::vqmovn(out_0_int), wrapper::vqmovn(out_1_int))); const auto high_part = wrapper::vqmovn(wrapper::vcombine(wrapper::vqmovn(out_2_int), wrapper::vqmovn(out_3_int))); const auto out = wrapper::vcombine(low_part, high_part); wrapper::vstore(out_ptr_xo_yo + cout * sizeof(int8_t), out); } for (; cout < out_dim_ch; ++cout) { const int8_t in00 = *(in_ptr_xi0_yi0 + cout * sizeof(int8_t)); const int8_t in01 = *(in_ptr_xi1_yi0 + cout * sizeof(int8_t)); const int8_t in10 = *(in_ptr_xi0_yi1 + cout * sizeof(int8_t)); const int8_t in11 = *(in_ptr_xi1_yi1 + cout * sizeof(int8_t)); float out0 = in00 * s00_s; out0 += in01 * s01_s; out0 += in10 * s10_s; out0 += in11 * s11_s; // Rounding modes of vector and scalar loops should match #if defined(__aarch64__) && !defined(BARE_METAL) *(out_ptr_xo_yo + cout * sizeof(int8_t)) = static_cast(std::round(out0)); #else // defined(__aarch64__) && !defined(BARE_METAL) *(out_ptr_xo_yo + cout * sizeof(int8_t)) = static_cast(out0); #endif // defined(__aarch64__) && !defined(BARE_METAL) } } } } } else { ARM_COMPUTE_ERROR("Not implemented"); } } void s16_neon_scale_nearest(const ITensor *src, ITensor *dst, const ITensor *offsets, float sampling_offset, bool align_corners, const Window &window) { const size_t in_stride_c = src->info()->dimension(0) + src->info()->padding().left + src->info()->padding().right; const size_t in_stride_w = src->info()->dimension(1) + src->info()->padding().top + src->info()->padding().bottom; const size_t in_stride_wc = in_stride_w * in_stride_c; const size_t in_dim_h = src->info()->dimension(2); // Compute the ratio between source height and destination height const auto hr = scale_utils::calculate_resize_ratio(in_dim_h, dst->info()->dimension(2), align_corners); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const int window_step_x = 8; Window win(window); win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator out(dst, win); const uint8_t *in_ptr_start = src->buffer() + src->info()->offset_first_element_in_bytes(); const unsigned int in_stride_bytes_hwc = src->info()->strides_in_bytes()[3]; execute_window_loop( win, [&](const Coordinates &id) { const int32_t offset = *reinterpret_cast(offsets->ptr_to_element(Coordinates(id.y(), id.z()))) * in_stride_c; const auto in_hi = static_cast( align_corners ? utils::rounding::round_half_away_from_zero((id.z() + sampling_offset) * hr) : std::floor((id.z() + sampling_offset) * hr)); const int offset_row = in_hi * in_stride_wc; int32_t x = window_start_x; const int16_t *in_ptr = reinterpret_cast(in_ptr_start + in_stride_bytes_hwc * id[3]); for (; x <= window_end_x - window_step_x; x += window_step_x) { wrapper::vstore(reinterpret_cast(out.ptr()) + x, wrapper::vloadq(in_ptr + offset + offset_row + x)); } for (; x < window_end_x; ++x) { *(reinterpret_cast(out.ptr()) + x) = *(in_ptr + offset + offset_row + x); } }, out); } void s16_neon_scale_bilinear(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy, BorderMode border_mode, PixelValue constant_border_value, float sampling_offset, bool align_corners, const Window &window) { // Compute the ratio between source height and destination height const auto hr = scale_utils::calculate_resize_ratio(src->info()->dimension(2), dst->info()->dimension(2), align_corners); Iterator out(dst, window); const int in_stride_c = src->info()->dimension(0) + src->info()->padding().left + src->info()->padding().right; const int in_dim_w = src->info()->dimension(1); const int in_dim_h = src->info()->dimension(2); const int in_stride_wc = in_stride_c * (in_dim_w + src->info()->padding().top + src->info()->padding().bottom); // Don't increment in Y and Z direction for the input tensor // A pointer to the start of this plane is needed as base for the precomputed offsets Window win_in(window); win_in.set(Window::DimY, Window::Dimension(0, 0, 0)); win_in.set(Window::DimZ, Window::Dimension(0, 0, 0)); Iterator in(src, win_in); if (border_mode == BorderMode::CONSTANT) { const int16_t const_border_value = static_cast(constant_border_value.get()); execute_window_loop( window, [&](const Coordinates &id) { const auto offset = *reinterpret_cast(offsets->ptr_to_element(Coordinates(id.y(), id.z()))); const auto dx_val = *reinterpret_cast(dx->ptr_to_element(Coordinates(id.y(), id.z()))); const auto dy_val = *reinterpret_cast(dy->ptr_to_element(Coordinates(id.y(), id.z()))); const int32_t in_hi = std::floor((id.z() + sampling_offset) * hr - sampling_offset); const int16_t *in_ptr = reinterpret_cast(in.ptr()) + offset * in_stride_c + in_hi * in_stride_wc; const auto a00 = (0 <= offset && offset < in_dim_w && 0 <= in_hi && in_hi < in_dim_h) ? *in_ptr : const_border_value; const auto a01 = (-1 <= offset && offset < in_dim_w - 1 && 0 <= in_hi && in_hi < in_dim_h) ? *(in_ptr + in_stride_c) : const_border_value; const auto a10 = (0 <= offset && offset < in_dim_w && -1 <= in_hi && in_hi < in_dim_h - 1) ? *(in_ptr + in_stride_wc) : const_border_value; const auto a11 = (-1 <= offset && offset < in_dim_w - 1 && -1 <= in_hi && in_hi < in_dim_h - 1) ? *(in_ptr + in_stride_c + in_stride_wc) : const_border_value; *reinterpret_cast(out.ptr()) = static_cast(scale_helpers::delta_bilinear(a00, a01, a10, a11, dx_val, dy_val)); }, in, out); } else if (border_mode == BorderMode::REPLICATE) { execute_window_loop( window, [&](const Coordinates &id) { const auto offset = *reinterpret_cast(offsets->ptr_to_element(Coordinates(id.y(), id.z()))); const auto dx_val = *reinterpret_cast(dx->ptr_to_element(Coordinates(id.y(), id.z()))); const auto dy_val = *reinterpret_cast(dy->ptr_to_element(Coordinates(id.y(), id.z()))); const int in_hi = std::floor((id.z() + sampling_offset) * hr - sampling_offset); const auto clamped_w = utility::clamp(offset, 0, in_dim_w - 1); const auto clamped_w1 = utility::clamp(offset + 1, 0, in_dim_w - 1); const auto clamped_h = utility::clamp(in_hi, 0, in_dim_h - 1); const auto clamped_h1 = utility::clamp(in_hi + 1, 0, in_dim_h - 1); const auto a00 = *(reinterpret_cast(in.ptr()) + clamped_w * in_stride_c + clamped_h * in_stride_wc); const auto a01 = *(reinterpret_cast(in.ptr()) + clamped_w1 * in_stride_c + clamped_h * in_stride_wc); const auto a10 = *(reinterpret_cast(in.ptr()) + clamped_w * in_stride_c + clamped_h1 * in_stride_wc); const auto a11 = *(reinterpret_cast(in.ptr()) + clamped_w1 * in_stride_c + clamped_h1 * in_stride_wc); *reinterpret_cast(out.ptr()) = static_cast(scale_helpers::delta_bilinear(a00, a01, a10, a11, dx_val, dy_val)); }, in, out); } else { ARM_COMPUTE_ERROR("Not implemented"); } } } // namespace namespace cpu { void s8_neon_scale(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy, InterpolationPolicy policy, BorderMode border_mode, PixelValue constant_border_value, float sampling_offset, bool align_corners, const Window &window) { if (policy == InterpolationPolicy::BILINEAR) { s8_neon_scale_bilinear(src, dst, offsets, dx, dy, border_mode, constant_border_value, sampling_offset, align_corners, window); } else { ARM_COMPUTE_ERROR("Not implemented"); } } void u8_neon_scale(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy, InterpolationPolicy policy, BorderMode border_mode, PixelValue constant_border_value, float sampling_offset, bool align_corners, const Window &window) { if (policy == InterpolationPolicy::BILINEAR) { u8_neon_scale_bilinear(src, dst, offsets, dx, dy, border_mode, constant_border_value, sampling_offset, align_corners, window); } else if (policy == InterpolationPolicy::NEAREST_NEIGHBOR) { u8_neon_scale_nearest(src, dst, offsets, sampling_offset, align_corners, window); } } void s16_neon_scale(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy, InterpolationPolicy policy, BorderMode border_mode, PixelValue constant_border_value, float sampling_offset, bool align_corners, const Window &window) { if (policy == InterpolationPolicy::BILINEAR) { s16_neon_scale_bilinear(src, dst, offsets, dx, dy, border_mode, constant_border_value, sampling_offset, align_corners, window); } else if (policy == InterpolationPolicy::NEAREST_NEIGHBOR) { s16_neon_scale_nearest(src, dst, offsets, sampling_offset, align_corners, window); } } } // namespace cpu } // namespace arm_compute