/* * Copyright (c) 2019-2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef SRC_CORE_SVE_KERNELS_BOUNDINGBOXTRANFORM_IMPL_H #define SRC_CORE_SVE_KERNELS_BOUNDINGBOXTRANFORM_IMPL_H #include "arm_compute/core/CPP/CPPTypes.h" #include "arm_compute/core/Helpers.h" namespace arm_compute { class ITensor; class Window; namespace cpu { /** Average pooling over an aligned window */ template inline input_data_type roi_align_1x1(const ITensor *input, unsigned int roi_batch, float region_start_x, float bin_size_x, int grid_size_x, float region_end_x, float region_start_y, float bin_size_y, int grid_size_y, float region_end_y, int pz) { if ((region_end_x <= region_start_x) || (region_end_y <= region_start_y)) { return input_data_type(0); } else { const DataLayout data_layout = input->info()->data_layout(); float avg = 0; // Iterate through the aligned pooling region for (int iy = 0; iy < grid_size_y; ++iy) { for (int ix = 0; ix < grid_size_x; ++ix) { // Align the window in the middle of every bin float y = region_start_y + (iy + 0.5) * bin_size_y / float(grid_size_y); float x = region_start_x + (ix + 0.5) * bin_size_x / float(grid_size_x); // Interpolation in the [0,0] [0,1] [1,0] [1,1] square const int y_low = y; const int x_low = x; const int y_high = y_low + 1; const int x_high = x_low + 1; const float ly = y - y_low; const float lx = x - x_low; const float hy = 1. - ly; const float hx = 1. - lx; const float w1 = hy * hx; const float w2 = hy * lx; const float w3 = ly * hx; const float w4 = ly * lx; if (data_layout == DataLayout::NCHW) { const auto data1 = *reinterpret_cast( input->ptr_to_element(Coordinates(x_low, y_low, pz, roi_batch))); const auto data2 = *reinterpret_cast( input->ptr_to_element(Coordinates(x_high, y_low, pz, roi_batch))); const auto data3 = *reinterpret_cast( input->ptr_to_element(Coordinates(x_low, y_high, pz, roi_batch))); const auto data4 = *reinterpret_cast( input->ptr_to_element(Coordinates(x_high, y_high, pz, roi_batch))); avg += w1 * data1 + w2 * data2 + w3 * data3 + w4 * data4; } else { const auto data1 = *reinterpret_cast( input->ptr_to_element(Coordinates(pz, x_low, y_low, roi_batch))); const auto data2 = *reinterpret_cast( input->ptr_to_element(Coordinates(pz, x_high, y_low, roi_batch))); const auto data3 = *reinterpret_cast( input->ptr_to_element(Coordinates(pz, x_low, y_high, roi_batch))); const auto data4 = *reinterpret_cast( input->ptr_to_element(Coordinates(pz, x_high, y_high, roi_batch))); avg += w1 * data1 + w2 * data2 + w3 * data3 + w4 * data4; } } } avg /= grid_size_x * grid_size_y; return input_data_type(avg); } } /** Average pooling over an aligned window */ template inline input_data_type roi_align_1x1_qasymm8(const ITensor *input, unsigned int roi_batch, float region_start_x, float bin_size_x, int grid_size_x, float region_end_x, float region_start_y, float bin_size_y, int grid_size_y, float region_end_y, int pz, const QuantizationInfo &out_qinfo) { if ((region_end_x <= region_start_x) || (region_end_y <= region_start_y)) { return input_data_type(out_qinfo.uniform().offset); } else { float avg = 0; const UniformQuantizationInfo input_qinfo = input->info()->quantization_info().uniform(); const bool is_qasymm_signed = is_data_type_quantized_asymmetric_signed(input->info()->data_type()); const DataLayout data_layout = input->info()->data_layout(); // Iterate through the aligned pooling region for (int iy = 0; iy < grid_size_y; ++iy) { for (int ix = 0; ix < grid_size_x; ++ix) { // Align the window in the middle of every bin float y = region_start_y + (iy + 0.5) * bin_size_y / float(grid_size_y); float x = region_start_x + (ix + 0.5) * bin_size_x / float(grid_size_x); // Interpolation in the [0,0] [0,1] [1,0] [1,1] square const int y_low = y; const int x_low = x; const int y_high = y_low + 1; const int x_high = x_low + 1; const float ly = y - y_low; const float lx = x - x_low; const float hy = 1. - ly; const float hx = 1. - lx; const float w1 = hy * hx; const float w2 = hy * lx; const float w3 = ly * hx; const float w4 = ly * lx; if (data_layout == DataLayout::NCHW) { if (is_qasymm_signed) { float data1 = dequantize_qasymm8_signed(*reinterpret_cast(input->ptr_to_element( Coordinates(x_low, y_low, pz, roi_batch))), input_qinfo); float data2 = dequantize_qasymm8_signed(*reinterpret_cast(input->ptr_to_element( Coordinates(x_high, y_low, pz, roi_batch))), input_qinfo); float data3 = dequantize_qasymm8_signed(*reinterpret_cast(input->ptr_to_element( Coordinates(x_low, y_high, pz, roi_batch))), input_qinfo); float data4 = dequantize_qasymm8_signed(*reinterpret_cast(input->ptr_to_element( Coordinates(x_high, y_high, pz, roi_batch))), input_qinfo); avg += w1 * data1 + w2 * data2 + w3 * data3 + w4 * data4; } else { float data1 = dequantize_qasymm8(*reinterpret_cast( input->ptr_to_element(Coordinates(x_low, y_low, pz, roi_batch))), input_qinfo); float data2 = dequantize_qasymm8(*reinterpret_cast( input->ptr_to_element(Coordinates(x_high, y_low, pz, roi_batch))), input_qinfo); float data3 = dequantize_qasymm8(*reinterpret_cast( input->ptr_to_element(Coordinates(x_low, y_high, pz, roi_batch))), input_qinfo); float data4 = dequantize_qasymm8(*reinterpret_cast( input->ptr_to_element(Coordinates(x_high, y_high, pz, roi_batch))), input_qinfo); avg += w1 * data1 + w2 * data2 + w3 * data3 + w4 * data4; } } else { if (is_qasymm_signed) { const auto data1 = dequantize_qasymm8_signed(*reinterpret_cast(input->ptr_to_element( Coordinates(pz, x_low, y_low, roi_batch))), input_qinfo); const auto data2 = dequantize_qasymm8_signed(*reinterpret_cast(input->ptr_to_element( Coordinates(pz, x_high, y_low, roi_batch))), input_qinfo); const auto data3 = dequantize_qasymm8_signed(*reinterpret_cast(input->ptr_to_element( Coordinates(pz, x_low, y_high, roi_batch))), input_qinfo); const auto data4 = dequantize_qasymm8_signed(*reinterpret_cast(input->ptr_to_element( Coordinates(pz, x_high, y_high, roi_batch))), input_qinfo); avg += w1 * data1 + w2 * data2 + w3 * data3 + w4 * data4; } else { const auto data1 = dequantize_qasymm8(*reinterpret_cast( input->ptr_to_element(Coordinates(pz, x_low, y_low, roi_batch))), input_qinfo); const auto data2 = dequantize_qasymm8(*reinterpret_cast( input->ptr_to_element(Coordinates(pz, x_high, y_low, roi_batch))), input_qinfo); const auto data3 = dequantize_qasymm8(*reinterpret_cast( input->ptr_to_element(Coordinates(pz, x_low, y_high, roi_batch))), input_qinfo); const auto data4 = dequantize_qasymm8(*reinterpret_cast( input->ptr_to_element(Coordinates(pz, x_high, y_high, roi_batch))), input_qinfo); avg += w1 * data1 + w2 * data2 + w3 * data3 + w4 * data4; } } } } avg /= grid_size_x * grid_size_y; input_data_type res = 0; if (is_qasymm_signed) { res = quantize_qasymm8_signed(avg, out_qinfo); } else { res = quantize_qasymm8(avg, out_qinfo); } return res; } } inline float compute_region_coordinate(int p, float bin_size, float roi_anchor, float max_value) { const float region_start = p * bin_size + roi_anchor; return utility::clamp(region_start, 0.0f, max_value); } template void roi_align(const ITensor *input, ITensor *output, const ITensor *rois, ROIPoolingLayerInfo pool_info, const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); const DataLayout data_layout = input->info()->data_layout(); const size_t values_per_roi = rois->info()->dimension(0); const int roi_list_start = window.x().start(); const int roi_list_end = window.x().end(); const unsigned int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const unsigned int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const unsigned int idx_depth = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL); const int input_width = input->info()->dimension(idx_width); const int input_height = input->info()->dimension(idx_height); const int input_chanels = input->info()->dimension(idx_depth); const int pooled_w = pool_info.pooled_width(); const int pooled_h = pool_info.pooled_height(); const DataType data_type = input->info()->data_type(); const bool is_qasymm = is_data_type_quantized_asymmetric(data_type); const auto *rois_ptr = reinterpret_cast(rois->buffer()); const QuantizationInfo &rois_qinfo = rois->info()->quantization_info(); for (int roi_indx = roi_list_start; roi_indx < roi_list_end; ++roi_indx) { const unsigned int roi_batch = rois_ptr[values_per_roi * roi_indx]; roi_data_type qx1 = rois_ptr[values_per_roi * roi_indx + 1]; roi_data_type qy1 = rois_ptr[values_per_roi * roi_indx + 2]; roi_data_type qx2 = rois_ptr[values_per_roi * roi_indx + 3]; roi_data_type qy2 = rois_ptr[values_per_roi * roi_indx + 4]; float x1(qx1); float x2(qx2); float y1(qy1); float y2(qy2); if (is_qasymm) { x1 = dequantize_qasymm16(qx1, rois_qinfo); x2 = dequantize_qasymm16(qx2, rois_qinfo); y1 = dequantize_qasymm16(qy1, rois_qinfo); y2 = dequantize_qasymm16(qy2, rois_qinfo); } const float roi_anchor_x = x1 * pool_info.spatial_scale(); const float roi_anchor_y = y1 * pool_info.spatial_scale(); const float roi_dims_x = std::max((x2 - x1) * pool_info.spatial_scale(), 1.0f); const float roi_dims_y = std::max((y2 - y1) * pool_info.spatial_scale(), 1.0f); float bin_size_x = roi_dims_x / pool_info.pooled_width(); float bin_size_y = roi_dims_y / pool_info.pooled_height(); // Iterate through all feature maps for (int ch = 0; ch < input_chanels; ++ch) { // Iterate through all output pixels for (int py = 0; py < pooled_h; ++py) { for (int px = 0; px < pooled_w; ++px) { const float region_start_x = compute_region_coordinate(px, bin_size_x, roi_anchor_x, input_width); const float region_start_y = compute_region_coordinate(py, bin_size_y, roi_anchor_y, input_height); const float region_end_x = compute_region_coordinate(px + 1, bin_size_x, roi_anchor_x, input_width); const float region_end_y = compute_region_coordinate(py + 1, bin_size_y, roi_anchor_y, input_height); const int roi_bin_grid_x = (pool_info.sampling_ratio() > 0) ? pool_info.sampling_ratio() : int(ceil(bin_size_x)); const int roi_bin_grid_y = (pool_info.sampling_ratio() > 0) ? pool_info.sampling_ratio() : int(ceil(bin_size_y)); input_data_type out_val(0); if (is_qasymm) { out_val = roi_align_1x1_qasymm8( input, roi_batch, region_start_x, bin_size_x, roi_bin_grid_x, region_end_x, region_start_y, bin_size_y, roi_bin_grid_y, region_end_y, ch, output->info()->quantization_info()); } else { out_val = roi_align_1x1(input, roi_batch, region_start_x, bin_size_x, roi_bin_grid_x, region_end_x, region_start_y, bin_size_y, roi_bin_grid_y, region_end_y, ch); } if (data_layout == DataLayout::NCHW) { auto out_ptr = reinterpret_cast( output->ptr_to_element(Coordinates(px, py, ch, roi_indx))); *out_ptr = out_val; } else { auto out_ptr = reinterpret_cast( output->ptr_to_element(Coordinates(ch, px, py, roi_indx))); *out_ptr = out_val; } } } } } } } // namespace cpu } // namespace arm_compute #endif //define SRC_CORE_SVE_KERNELS_BOUNDINGBOXTRANFORM_IMPL_H