/* * Copyright (c) 2021-2022 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef SRC_CORE_NEON_KERNELS_QUANTIZED_H #define SRC_CORE_NEON_KERNELS_QUANTIZED_H #include "arm_compute/core/Types.h" #include "arm_compute/core/utils/misc/Traits.h" #include "src/core/helpers/PoolingHelpers.h" #include "src/core/NEON/NEAsymm.h" #include "src/core/NEON/NEFixedPoint.h" #include "src/core/NEON/NEMath.h" #include "src/core/NEON/wrapper/wrapper.h" #include namespace arm_compute { namespace cpu { template void poolingMxN_q8_neon_nhwc(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window) { ARM_COMPUTE_UNUSED(dst1); const int window_start_x = window.x().start(); const int window_end_x = window.x().end(); const int window_step_x = 16; const int window_half_step_x = window_step_x / 2; Window window_out = window; window_out.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator in(src, window_src); Iterator out(dst0, window_out); using q8x8_t = typename wrapper::traits::neon_vector::type; using q8x16_t = typename wrapper::traits::neon_vector::type; using q16_t = typename wrapper::traits::promote_t; using q16x8_t = typename wrapper::traits::neon_vector::type; using q32_t = typename wrapper::traits::promote_t; using q32x4_t = typename wrapper::traits::neon_vector::type; const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width; const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height; const int pool_pad_right = pool_info.pad_stride_info.pad_right(); const int pool_pad_top = pool_info.pad_stride_info.pad_top(); const int pool_pad_left = pool_info.pad_stride_info.pad_left(); const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride(); const int upper_bound_w = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = src->info()->dimension(2) + (pool_info.exclude_padding ? 0 : pool_pad_bottom); const float32x4_t half_scale_v = vdupq_n_f32(0.5f); const UniformQuantizationInfo src_qinfo = src->info()->quantization_info().uniform(); const UniformQuantizationInfo dst_qinfo = dst0->info()->quantization_info().uniform(); const float quant_rescale = dst_qinfo.scale / src_qinfo.scale; // "new_offset" doesn't have to consider the "half_scale_v" in its computation // With a requantization performed in a single step there won't be uncertainties introduced const int32_t new_offset = dst_qinfo.offset - static_cast(static_cast(src_qinfo.offset) / quant_rescale); const float requant_scale = dst_qinfo.scale / src_qinfo.scale; const int32_t requant_offset = dst_qinfo.offset - static_cast(static_cast(src_qinfo.offset) / requant_scale); const UniformQuantizationInfo requant_qinfo = UniformQuantizationInfo(requant_scale, requant_offset); execute_window_loop( window_out, [&](const Coordinates &id) { const int idx_width = id.y() * pool_stride_x; const int idx_height = id.z() * pool_stride_y; const int pool_limit_y = pool_pad_top - idx_height; const int pool_limit_x = pool_pad_left - idx_width; const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y); const int pool_end_y = std::min(pool_size_y, window_src.z().end() + pool_limit_y); const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x); const int pool_end_x = std::min(pool_size_x, window_src.y().end() + pool_limit_x); int x_off = window_start_x; for (; x_off <= (window_end_x - window_step_x); x_off += window_step_x) { if (pool_info.pool_type != PoolingType::MAX) { q32x4_t vres1 = wrapper::vdup_n(static_cast(0.f), wrapper::traits::vector_128_tag{}); q32x4_t vres2 = wrapper::vdup_n(static_cast(0.f), wrapper::traits::vector_128_tag{}); q32x4_t vres3 = wrapper::vdup_n(static_cast(0.f), wrapper::traits::vector_128_tag{}); q32x4_t vres4 = wrapper::vdup_n(static_cast(0.f), wrapper::traits::vector_128_tag{}); // Calculate scale const float scale = calculate_avg_scale_pool2d( pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); // Perform pooling for (int y = pool_start_y; y < pool_end_y; ++y) { for (int x = pool_start_x; x < pool_end_x; ++x) { const q8x16_t data = wrapper::vloadq( reinterpret_cast( in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast(src->info()->strides_in_bytes().z())) + x_off); const q16x8_t data_q16 = wrapper::vmovl(wrapper::vgetlow(data)); const q16x8_t data2_q16 = wrapper::vmovl(wrapper::vgethigh(data)); vres1 = wrapper::vadd(vres1, wrapper::vmovl(wrapper::vgetlow(data_q16))); vres2 = wrapper::vadd(vres2, wrapper::vmovl(wrapper::vgethigh(data_q16))); vres3 = wrapper::vadd(vres3, wrapper::vmovl(wrapper::vgetlow(data2_q16))); vres4 = wrapper::vadd(vres4, wrapper::vmovl(wrapper::vgethigh(data2_q16))); } } if (src_qinfo != dst_qinfo) { const float32x4x4_t vres = {{ vcvtq_f32_q32(vres1), vcvtq_f32_q32(vres2), vcvtq_f32_q32(vres3), vcvtq_f32_q32(vres4), }}; const auto requantized_dst = vrequantize_pooling_with_scale(vres, quant_rescale, scale, new_offset); // Store result wrapper::vstore(reinterpret_cast(out.ptr()) + x_off, wrapper::vgetlow(requantized_dst)); wrapper::vstore(reinterpret_cast(out.ptr()) + x_off + 8, wrapper::vgethigh(requantized_dst)); } else { const float32x4_t scale_v = vdupq_n_f32(scale); // Divide by scale and add 0.5f to round to nearest instead of rounding towards zero vres1 = vcvtq_q32_f32(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres1), scale_v)); vres2 = vcvtq_q32_f32(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres2), scale_v)); vres3 = vcvtq_q32_f32(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres3), scale_v)); vres4 = vcvtq_q32_f32(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres4), scale_v)); const q8x8_t res1 = wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(vres1), wrapper::vmovn(vres2))); const q8x8_t res2 = wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(vres3), wrapper::vmovn(vres4))); // Store result wrapper::vstore(reinterpret_cast(out.ptr()) + x_off, res1); wrapper::vstore(reinterpret_cast(out.ptr()) + x_off + 8, res2); } } else { q8x16_t vres = wrapper::vdup_n(std::numeric_limits::min(), wrapper::traits::vector_128_tag{}); for (int y = pool_start_y; y < pool_end_y; ++y) { for (int x = pool_start_x; x < pool_end_x; ++x) { const q8x16_t data = wrapper::vloadq( reinterpret_cast( in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast(src->info()->strides_in_bytes().z())) + x_off); vres = wrapper::vmax(vres, data); } } // Store result wrapper::vstore(reinterpret_cast(out.ptr()) + x_off, (src_qinfo != dst_qinfo) ? vrequantize_pooling(wrapper::vgetlow(vres), wrapper::vgethigh(vres), requant_qinfo) : vres); } } if (pool_info.pool_type == PoolingType::MAX) { for (; x_off <= (window_end_x - window_half_step_x); x_off += window_half_step_x) { q8x8_t vres = wrapper::vdup_n(std::numeric_limits::min(), wrapper::traits::vector_64_tag{}); for (int y = pool_start_y; y < pool_end_y; ++y) { for (int x = pool_start_x; x < pool_end_x; ++x) { const q8x8_t data = wrapper::vload( reinterpret_cast( in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast(src->info()->strides_in_bytes().z())) + x_off); vres = wrapper::vmax(vres, data); } } // Store result wrapper::vstore(reinterpret_cast(out.ptr()) + x_off, (src_qinfo != dst_qinfo) ? vrequantize_pooling(vres, requant_qinfo) : vres); } } // Left-overs loop for (; x_off < window_end_x; ++x_off) { if (pool_info.pool_type != PoolingType::MAX) { q32_t res = static_cast(0.f); // Calculate scale const float scale = calculate_avg_scale_pool2d( pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); // Perform pooling for (int y = pool_start_y; y < pool_end_y; ++y) { for (int x = pool_start_x; x < pool_end_x; ++x) { const T data = *(reinterpret_cast( in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast(src->info()->strides_in_bytes().z())) + x_off); res += data; } } if (src_qinfo != dst_qinfo) { const float res_f = static_cast(res); const float new_scale = quant_rescale / scale; const auto requantized_dst = quantize(res_f, UniformQuantizationInfo(new_scale, new_offset)); // Store result *(reinterpret_cast(out.ptr()) + x_off) = requantized_dst; } else { // Divide by scale and add 0.5f to round to nearest instead of rounding towards zero res = static_cast(0.5f + static_cast(res) * scale); // Store result *(reinterpret_cast(out.ptr()) + x_off) = res; } } else { T res = std::numeric_limits::min(); for (int y = pool_start_y; y < pool_end_y; ++y) { for (int x = pool_start_x; x < pool_end_x; ++x) { const T data = *(reinterpret_cast( in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast(src->info()->strides_in_bytes().z())) + x_off); res = std::max(res, data); } } // Store result if (src_qinfo != dst_qinfo) { const float res_f = static_cast(res); *(reinterpret_cast(out.ptr()) + x_off) = quantize(res_f, requant_qinfo); } else { *(reinterpret_cast(out.ptr()) + x_off) = res; } } } }, in, out); } #if defined(ENABLE_NCHW_KERNELS) template inline void scale_vector_q16x8(bool exclude_padding, TVec &v, const Coordinates &id, int id_offset, int step, const int pool_size, const int upper_bound_w, const int upper_bound_h, const int pad_x, const int pad_y, const int stride_x, const int stride_y) { int start_x = (id.x() + id_offset) * stride_x - pad_x; int start_y = id.y() * stride_y - pad_y; const int end_y = std::min(start_y + pool_size, upper_bound_h); if (exclude_padding) { start_y = std::max(0, start_y); } std::array elems = {{ wrapper::vgetlane(v, 0), wrapper::vgetlane(v, 1), wrapper::vgetlane(v, 2), wrapper::vgetlane(v, 3), wrapper::vgetlane(v, 4), wrapper::vgetlane(v, 5), wrapper::vgetlane(v, 6), wrapper::vgetlane(v, 7), }}; for (auto &el : elems) { int c_start_x = start_x; const int end_x = std::min(c_start_x + pool_size, upper_bound_w); if (exclude_padding) { c_start_x = std::max(0, c_start_x); } float scale = 1.f / ((end_y - start_y) * (end_x - c_start_x)); el *= scale; start_x += step * stride_x; } v = wrapper::vsetlane(elems[0], v, 0); v = wrapper::vsetlane(elems[1], v, 1); v = wrapper::vsetlane(elems[2], v, 2); v = wrapper::vsetlane(elems[3], v, 3); v = wrapper::vsetlane(elems[4], v, 4); v = wrapper::vsetlane(elems[5], v, 5); v = wrapper::vsetlane(elems[6], v, 6); v = wrapper::vsetlane(elems[7], v, 7); } template auto load16_boundary_aware( int srcw, int srch, int pad_l, int pad_r, int pad_t, int pad_b, int x, int y, const T *ptr, T fval) { ARM_COMPUTE_UNUSED(pad_b, pad_r); T vec[16]; //handle reading a row out of the tensor const bool row_in_bounds((y >= pad_t) && (y < (srch + pad_t))); for (int i = 0; i < 16; i++) { if (row_in_bounds && (x + i >= pad_l) && (x + i < (srcw + pad_l))) { vec[i] = *(ptr + i); } else { vec[i] = fval; } } return wrapper::vloadq(vec); } template inline void write16_boundary_aware(int x, int dst_w, const V &lower, const V &upper, T *ptr) { if (deinterleave) { for (int i = 0; i < 8 && (i * 2 + x) < dst_w; ++i) { *(ptr + i * 2) = lower[i]; } for (int i = 0; i < 8 && (i * 2 + x + 1) < dst_w; ++i) { *(ptr + 1 + i * 2) = upper[i]; } } else { for (int i = 0; i < 8 && (i + x) < dst_w; ++i) { *(ptr + i) = lower[i]; } for (int i = 0; i < 8 && (i + x + 8) < dst_w; ++i) { *(ptr + i + 8) = upper[i]; } } } template inline void write8_boundary_aware(int x, int dst_w, const V &v, T *ptr) { for (int i = 0; i < 8 && (i + x) < dst_w; ++i) { *(ptr + i) = v[i]; } } template void pooling2_quantized_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window) { ARM_COMPUTE_UNUSED(dst1); Iterator in(src, window_src); Iterator out(dst0, window); /** SIMD vector types */ using q8x8_t = typename wrapper::traits::neon_vector::type; using q8x16_t = typename wrapper::traits::neon_vector::type; using q16_t = typename wrapper::traits::promote_t; using q16x4_t = typename wrapper::traits::neon_vector::type; using q16x8_t = typename wrapper::traits::neon_vector::type; using q16x8x2_t = typename wrapper::traits::neon_vector::type; constexpr int pool_size = 2; int pool_stride_x = 0; int pool_stride_y = 0; const int pool_pad_right = pool_info.pad_stride_info.pad_right(); const int pool_pad_top = pool_info.pad_stride_info.pad_top(); const int pool_pad_left = pool_info.pad_stride_info.pad_left(); const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom(); std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride(); const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom); const T *const src_top_ptr = reinterpret_cast( src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top)))); const T *const src_bottom_ptr = reinterpret_cast( src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + 1))); const int scale_step_x = (pool_stride_x == 1) ? 2 : 1; const UniformQuantizationInfo src_qinfo = src->info()->quantization_info().uniform(); const UniformQuantizationInfo dst_qinfo = dst0->info()->quantization_info().uniform(); const bool have_different_qinfo = src_qinfo != dst_qinfo; const float requant_scale = dst_qinfo.scale / src_qinfo.scale; const int32_t requant_offset = dst_qinfo.offset - static_cast(static_cast(src_qinfo.offset) / requant_scale); const UniformQuantizationInfo requant_qinfo = UniformQuantizationInfo(requant_scale, requant_offset); const int src_w = src->info()->dimension(0); const int src_h = src->info()->dimension(1); const int dst_w = dst0->info()->dimension(0); const T fill_value = (pool_info.pool_type == PoolingType::MAX) ? std::numeric_limits::min() : T(0); execute_window_loop( window, [&](const Coordinates &id) { const auto x_val = id.x() * pool_stride_x; const auto y_val_0 = id.y() * pool_stride_y; const auto y_val_1 = (id.y() * pool_stride_y) + 1; auto top_data = load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom, x_val, y_val_0, reinterpret_cast(src_top_ptr + in.offset()), fill_value); auto bottom_data = load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom, x_val, y_val_1, reinterpret_cast(src_bottom_ptr + in.offset()), fill_value); q8x8_t lower_res = {}; q8x8_t upper_res = {}; if (pool_info.pool_type != PoolingType::MAX) { const q16x8x2_t top_data_q16 = { {wrapper::vmovl(wrapper::vgetlow(top_data)), wrapper::vmovl(wrapper::vgethigh(top_data))}}; const q16x8x2_t bottom_data_q16 = { {wrapper::vmovl(wrapper::vgetlow(bottom_data)), wrapper::vmovl(wrapper::vgethigh(bottom_data))}}; // Add rows const q16x8x2_t vrsum = {{ wrapper::vadd(top_data_q16.val[0], bottom_data_q16.val[0]), wrapper::vadd(top_data_q16.val[1], bottom_data_q16.val[1]), }}; // Pair-wise add row data const q16x4_t vpsum_1 = wrapper::vpadd(wrapper::vgetlow(vrsum.val[0]), wrapper::vgethigh(vrsum.val[0])); const q16x4_t vpsum_2 = wrapper::vpadd(wrapper::vgetlow(vrsum.val[1]), wrapper::vgethigh(vrsum.val[1])); q16x8_t res_lower = wrapper::vcombine(vpsum_1, vpsum_2); // Scale lower result scale_vector_q16x8(pool_info.exclude_padding, res_lower, id, 0, scale_step_x, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); lower_res = wrapper::vmovn(res_lower); // Compute upper result for stride_x == 1 if (pool_stride_x == 1) { // Shifted row sum const q16x8x2_t vrsum_shifted = { {wrapper::vext_1(vrsum.val[0], vrsum.val[1]), wrapper::vext_1(vrsum.val[1], vrsum.val[1])}}; // Pair-wise add shifted row q16x8_t res_upper = wrapper::vcombine( wrapper::vpadd(wrapper::vgetlow(vrsum_shifted.val[0]), wrapper::vgethigh(vrsum_shifted.val[0])), wrapper::vpadd(wrapper::vgetlow(vrsum_shifted.val[1]), wrapper::vgethigh(vrsum_shifted.val[1]))); // Scale upper result scale_vector_q16x8(pool_info.exclude_padding, res_upper, id, 1, 2, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); upper_res = wrapper::vmovn(res_upper); } } else { const q8x16_t max_data = wrapper::vmax(top_data, bottom_data); lower_res = wrapper::vpmax(wrapper::vgetlow(max_data), wrapper::vgethigh(max_data)); if (pool_stride_x == 1) { const q8x16_t max_data_shifted = wrapper::vext_1(max_data, max_data); upper_res = wrapper::vpmax(wrapper::vgetlow(max_data_shifted), wrapper::vgethigh(max_data_shifted)); } } if (have_different_qinfo) { const auto requantized_dst = vrequantize_pooling(lower_res, upper_res, requant_qinfo); lower_res = wrapper::vgetlow(requantized_dst); upper_res = wrapper::vgethigh(requantized_dst); } auto out_ptr = reinterpret_cast(out.ptr()); // Store result if (pool_stride_x == 1) { write16_boundary_aware(id.x(), dst_w, lower_res, upper_res, out_ptr); } else { write8_boundary_aware(id.x(), dst_w, lower_res, out_ptr); } }, in, out); } template void pooling3_quantized_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window) { ARM_COMPUTE_UNUSED(dst1); Iterator in(src, window_src); Iterator out(dst0, window); /** SIMD vector types */ using q8x8_t = typename wrapper::traits::neon_vector::type; using q8x16_t = typename wrapper::traits::neon_vector::type; using q8x8x2_t = typename std::conditional::value, uint8x8x2_t, int8x8x2_t>::type; using q16_t = typename wrapper::traits::promote_t; using q16x8_t = typename wrapper::traits::neon_vector::type; using q16x8x2_t = typename wrapper::traits::neon_vector::type; constexpr int pool_size = 3; const int pool_pad_right = pool_info.pad_stride_info.pad_right(); const int pool_pad_top = pool_info.pad_stride_info.pad_top(); const int pool_pad_left = pool_info.pad_stride_info.pad_left(); const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride(); const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom); const UniformQuantizationInfo &src_qinfo = src->info()->quantization_info().uniform(); const UniformQuantizationInfo &dst_qinfo = dst0->info()->quantization_info().uniform(); const float requant_scale = dst_qinfo.scale / src_qinfo.scale; const int32_t requant_offset = dst_qinfo.offset - static_cast(static_cast(src_qinfo.offset) / requant_scale); const UniformQuantizationInfo requant_qinfo = UniformQuantizationInfo(requant_scale, requant_offset); const T *const src_top_ptr = reinterpret_cast( src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top)))); const T *const src_middle_ptr = reinterpret_cast( src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + 1))); const T *const src_bottom_ptr = reinterpret_cast( src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + 2))); const int src_w = src->info()->dimension(0); const int src_h = src->info()->dimension(1); const T fill_value = (pool_info.pool_type == PoolingType::AVG) ? T(0) : std::numeric_limits::min(); const int dst_w = dst0->info()->dimension(0); execute_window_loop( window, [&](const Coordinates &id) { const auto x_val = id.x() * pool_stride_x; const auto y_val_0 = id.y() * pool_stride_y; const auto y_val_1 = (id.y() * pool_stride_y) + 1; const auto y_val_2 = (id.y() * pool_stride_y) + 2; auto top_data = load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom, x_val, y_val_0, reinterpret_cast(src_top_ptr + in.offset()), fill_value); auto middle_data = load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom, x_val, y_val_1, reinterpret_cast(src_middle_ptr + in.offset()), fill_value); auto bottom_data = load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom, x_val, y_val_2, reinterpret_cast(src_bottom_ptr + in.offset()), fill_value); q8x8_t fres = {}; q8x16_t fqres = {}; if (pool_info.pool_type == PoolingType::AVG) { // Convert data to u16 const q16x8x2_t top_data_q16 = { {wrapper::vmovl(wrapper::vgetlow(top_data)), wrapper::vmovl(wrapper::vgethigh(top_data))}}; const q16x8x2_t middle_data_q16 = { {wrapper::vmovl(wrapper::vgetlow(middle_data)), wrapper::vmovl(wrapper::vgethigh(middle_data))}}; const q16x8x2_t bottom_data_q16 = { {wrapper::vmovl(wrapper::vgetlow(bottom_data)), wrapper::vmovl(wrapper::vgethigh(bottom_data))}}; // Calculate row sums const q16x8x2_t vrsum = {{ wrapper::vadd(wrapper::vadd(top_data_q16.val[0], bottom_data_q16.val[0]), middle_data_q16.val[0]), wrapper::vadd(wrapper::vadd(top_data_q16.val[1], bottom_data_q16.val[1]), middle_data_q16.val[1]), }}; const q16x8x2_t vrsum_shifted_1 = { {wrapper::vext_1(vrsum.val[0], vrsum.val[1]), wrapper::vext_1(vrsum.val[1], vrsum.val[1])}}; const q16x8x2_t vrsum_shifted_2 = { {wrapper::vext_2(vrsum.val[0], vrsum.val[1]), wrapper::vext_2(vrsum.val[1], vrsum.val[1])}}; // Calculate final sum q16x8x2_t final_sum = {{ wrapper::vadd(wrapper::vadd(vrsum.val[0], vrsum_shifted_1.val[0]), vrsum_shifted_2.val[0]), wrapper::vadd(wrapper::vadd(vrsum.val[1], vrsum_shifted_1.val[1]), vrsum_shifted_2.val[1]), }}; if (pool_stride_x == 2) { q16x8_t res = { wrapper::vgetlane(final_sum.val[0], 0), wrapper::vgetlane(final_sum.val[0], 2), wrapper::vgetlane(final_sum.val[0], 4), wrapper::vgetlane(final_sum.val[0], 6), wrapper::vgetlane(final_sum.val[1], 0), wrapper::vgetlane(final_sum.val[1], 2), wrapper::vgetlane(final_sum.val[1], 4), wrapper::vgetlane(final_sum.val[1], 6), }; scale_vector_q16x8(pool_info.exclude_padding, res, id, 0, 1, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); fres = wrapper::vmovn(res); } else { // Scale lower result scale_vector_q16x8(pool_info.exclude_padding, final_sum.val[0], id, 0, 1, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); // Scale lower result scale_vector_q16x8(pool_info.exclude_padding, final_sum.val[1], id, 8, 1, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); fqres = wrapper::vcombine(wrapper::vmovn(final_sum.val[0]), wrapper::vmovn(final_sum.val[1])); } } else { const q8x16_t max_data = wrapper::vmax(wrapper::vmax(top_data, bottom_data), middle_data); const q8x16_t max_data_shift1 = wrapper::vext_1(max_data, max_data); const q8x16_t max_data_shift2 = wrapper::vext_2(max_data, max_data); const q8x16_t final_max = wrapper::vmax(wrapper::vmax(max_data, max_data_shift1), max_data_shift2); if (pool_stride_x == 2) { const q8x8x2_t table = {{wrapper::vgetlow(final_max), wrapper::vgethigh(final_max)}}; static const q8x8_t lookup_val = {0, 2, 4, 6, 8, 10, 12, 14}; fres = wrapper::vtbl(table, lookup_val); } else { fqres = final_max; } } // Store result if (pool_stride_x == 1) { if (src_qinfo != dst_qinfo) { fqres = vrequantize_pooling(wrapper::vgetlow(fqres), wrapper::vgethigh(fqres), requant_qinfo); } write16_boundary_aware(id.x(), dst_w, wrapper::vgetlow(fqres), wrapper::vgethigh(fqres), reinterpret_cast(out.ptr())); } else { if (src_qinfo != dst_qinfo) { fres = vrequantize_pooling(fres, requant_qinfo); } write8_boundary_aware(id.x(), dst_w, fres, reinterpret_cast(out.ptr())); } }, in, out); } template void poolingMxN_quantized_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window) { ARM_COMPUTE_UNUSED(dst1); Iterator in(src, window_src); Iterator out(dst0, window); /** SIMD vector types */ using q16_t = typename wrapper::traits::promote_t; using q32_t = typename wrapper::traits::promote_t; const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width; const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height; const int pool_pad_right = pool_info.pad_stride_info.pad_right(); const int pool_pad_top = pool_info.pad_stride_info.pad_top(); const int pool_pad_left = pool_info.pad_stride_info.pad_left(); const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride(); const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom); const UniformQuantizationInfo &src_qinfo = src->info()->quantization_info().uniform(); const UniformQuantizationInfo &dst_qinfo = dst0->info()->quantization_info().uniform(); const int src_w = src->info()->dimension(0); const int src_h = src->info()->dimension(1); const T fill_value = (pool_info.pool_type == PoolingType::AVG) ? T(0) : std::numeric_limits::min(); const int stridex_in_bytes = static_cast(src->info()->strides_in_bytes().x()); const int stridey_in_bytes = static_cast(src->info()->strides_in_bytes().y()); execute_window_loop( window, [&](const Coordinates &id) { T res = std::numeric_limits::min(); if (pool_info.pool_type != PoolingType::MAX) { q32_t sres = 0; // Calculate scale const float scale = calculate_avg_scale_pool2d( pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); // Perform pooling for (int y = 0; y < pool_size_y; ++y) { for (int x = 0; x < pool_size_x; ++x) { const auto in_ptr = reinterpret_cast( in.ptr() + (x - pool_pad_left) * stridex_in_bytes + (y - pool_pad_top) * stridey_in_bytes); const int idx = x + id.x() * pool_stride_x - pool_pad_left; const int idy = y + id.y() * pool_stride_y - pool_pad_top; const T data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *in_ptr; sres += data; } } // Divide by scale res = static_cast(support::cpp11::round(sres * scale)); } else { for (int y = 0; y < pool_size_y; ++y) { for (int x = 0; x < pool_size_x; ++x) { const auto in_ptr = reinterpret_cast( in.ptr() + (x - pool_pad_left) * stridex_in_bytes + (y - pool_pad_top) * stridey_in_bytes); const int idx = x + id.x() * pool_stride_x - pool_pad_left; const int idy = y + id.y() * pool_stride_y - pool_pad_top; const T data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *in_ptr; res = std::max(res, data); } } } // Store result res = (src_qinfo != dst_qinfo) ? Qasymm8QuantizationHelper::quantize( Qasymm8QuantizationHelper::dequantize(res, src_qinfo), dst_qinfo) : res; *(reinterpret_cast(out.ptr())) = res; }, in, out); } #endif /* defined(ENABLE_NCHW_KERNELS) */ } // namespace cpu } // namespace arm_compute #endif // SRC_CORE_NEON_KERNELS_QUANTIZED_H