/* * Copyright (c) 2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ACL_SRC_CPU_KERNELS_POOL2D_NEON_IMPL_H #define ACL_SRC_CPU_KERNELS_POOL2D_NEON_IMPL_H #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/utils/misc/Traits.h" #include "src/core/helpers/WindowHelpers.h" #include "src/core/NEON/wrapper/intrinsics/intrinsics.h" #include "src/cpu/kernels/pool2d/neon/list.h" #include #ifdef ENABLE_NCHW_KERNELS namespace arm_compute { namespace cpu { namespace { template auto read_2_boundary_aware_as_f32(int srcw, int srch, int pad_l, int pad_t, int x, int y, const T *ptr, T fval) { T vec[2]; const bool row_in_bounds((y >= pad_t) && (y < (srch + pad_t))); for (int i = 0; i < 2; i++) { if (row_in_bounds && (x + i >= pad_l) && (x + i < (srcw + pad_l))) { vec[i] = *(ptr + i); } else { vec[i] = fval; } } float32_t vec_f32[2] = {vec[0], vec[1]}; return wrapper::vload(vec_f32); } } // namespace template void pooling2_nchw_maxpool_indices(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window) { Iterator in(src, window_src); Iterator out(dst0, window); Iterator indices(dst1, window); const int pool_pad_top = pool_info.pad_stride_info.pad_top(); const int pool_pad_left = pool_info.pad_stride_info.pad_left(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride(); const int src_w = src->info()->dimension(0); const int src_h = src->info()->dimension(1); const uint8_t *const src_top_ptr = src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top))); const uint8_t *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + 1)); const int pad_left = src->info()->padding().left; const int pad_right = src->info()->padding().right; const int in_stride_y = static_cast(src->info()->strides_in_bytes().y()); const T float_min = get_initial_min(pool_info.use_inf_as_limit); const T fill_value = (pool_info.pool_type == PoolingType::MAX) ? float_min : 0.f; execute_window_loop( window, [&](const Coordinates &id) { const auto x_val = id.x() * pool_stride_x; const auto y_val_0 = id.y() * pool_stride_y; const auto y_val_1 = (id.y() * pool_stride_y) + 1; auto top_data = read_2_boundary_aware_as_f32(src_w, src_h, pool_pad_left, pool_pad_top, x_val, y_val_0, reinterpret_cast(src_top_ptr + in.offset()), fill_value); auto bottom_data = read_2_boundary_aware_as_f32(src_w, src_h, pool_pad_left, pool_pad_top, x_val, y_val_1, reinterpret_cast(src_bottom_ptr + in.offset()), fill_value); // Calculate max data, compare top first, then bottom, to make sue the first max is recorded. const float32x2_t max_data_top = vpmax_f32(top_data, top_data); const float32x2_t max_data_bottom = vpmax_f32(bottom_data, bottom_data); const float32x2_t max_data = vmax_f32(max_data_top, max_data_bottom); *(reinterpret_cast(out.ptr())) = static_cast(vget_lane_f32(max_data, 0)); // Calculate max data indice, which will be used in max unpool. const uint32_t offset_base = offset_no_padding(in.offset(), id, *src->info(), pool_stride_x, pool_stride_y, DataLayout::NCHW); const uint32_t offset_top = (uint32_t)(offset_base / sizeof(T)); const uint32_t offset_bottom = offset_top + in_stride_y / sizeof(T) - pad_right - pad_left; const uint32x2_t voffset_top = {offset_top, offset_top + 1u}; const uint32x2_t voffset_bottom = {offset_bottom, offset_bottom + 1u}; const uint32x2_t tmp_indices_top = vbsl_u32(vcge_f32(top_data, vrev64_f32(top_data)), voffset_top, vrev64_u32(voffset_top)); const uint32x2_t tmp_indices_bottom = vbsl_u32(vcge_f32(bottom_data, vrev64_f32(bottom_data)), voffset_bottom, vrev64_u32(voffset_bottom)); *(reinterpret_cast(indices.ptr())) = vget_lane_u32( vbsl_u32(vcge_f32(max_data_top, max_data_bottom), tmp_indices_top, tmp_indices_bottom), 0); }, in, out, indices); } } // namespace cpu } // namespace arm_compute #endif // ENABLE_NCHW_KERNELS #endif // ACL_SRC_CPU_KERNELS_POOL2D_NEON_IMPL_H