/* * Copyright (c) 2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "src/core/CPP/Validate.h" #include "src/core/NEON/wrapper/wrapper.h" #include "src/cpu/CpuTypes.h" namespace arm_compute { namespace cpu { void mul_F32_F32_F32(const ITensor *src1, const ITensor *src2, ITensor *out, const Window &window, float scale) { // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(src2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); constexpr int window_step_x = 16 / sizeof(float); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = src1->info()->tensor_shape().x() != src2->info()->tensor_shape().x(); using ExactTagType = typename wrapper::traits::neon_vector::tag_type; if (is_broadcast_across_x) { const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? src2 : src1; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? src2 : src1; // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator dst(out, win); execute_window_loop( win, [&](const Coordinates &) { const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const auto output_ptr = reinterpret_cast(dst.ptr()); const float broadcast_value = *reinterpret_cast(broadcast_input.ptr()); const auto broadcast_value_vec = wrapper::vdup_n(broadcast_value, ExactTagType{}); const auto scale_vec = wrapper::vdup_n(scale, ExactTagType{}); // Compute window_step_x elements per iteration int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { const auto non_broadcast_v = wrapper::vloadq(non_broadcast_input_ptr + x); auto res = wrapper::vmul(wrapper::vmul(broadcast_value_vec, non_broadcast_v), scale_vec); wrapper::vstore(output_ptr + x, res); } // Compute left-over elements for (; x < window_end_x; ++x) { const auto non_broadcast_v = *(non_broadcast_input_ptr + x); *(output_ptr + x) = broadcast_value * non_broadcast_v * scale; } }, broadcast_input, non_broadcast_input, dst); } else { // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(src1, input1_win); Iterator input2(src2, input2_win); Iterator dst(out, win); execute_window_loop( win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(dst.ptr()); // Compute window_step_x elements per iteration int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { const auto ta1 = wrapper::vloadq(input1_ptr + x); const auto ta2 = wrapper::vloadq(input2_ptr + x); const auto scale_vec = wrapper::vdup_n(scale, ExactTagType{}); const auto res = wrapper::vmul(wrapper::vmul(ta1, ta2), scale_vec); wrapper::vstore(output_ptr + x, res); } // Compute left-over elements for (; x < window_end_x; ++x) { const auto ta1 = *(input1_ptr + x); const auto ta2 = *(input2_ptr + x); *(output_ptr + x) = ta1 * ta2 * scale; } }, input1, input2, dst); } } } // namespace cpu } // namespace arm_compute