/* * Copyright (c) 2018-2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef SRC_CORE_NEON_KERNELS_FUSE_BATCH_NORMALIZATION_IMPL_H #define SRC_CORE_NEON_KERNELS_FUSE_BATCH_NORMALIZATION_IMPL_H #include "arm_compute/core/Helpers.h" #include "src/core/NEON/wrapper/wrapper.h" namespace arm_compute { namespace cpu { template void fused_batch_normalization_dwc_nhwc(const ITensor *dwc_weights, const ITensor *dwc_bias, ITensor *fused_weights, ITensor *fused_bias, const ITensor *bn_mean, const ITensor *bn_var, const ITensor *bn_beta, const ITensor *bn_gamma, float epsilon, const Window &window) { using ScalarType = T; const int size = 16 / dwc_weights->info()->element_size(); using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t; const bool run_in_place_weights = (fused_weights == nullptr) || (fused_weights == dwc_weights); const bool run_in_place_bias = (fused_bias == nullptr) || (dwc_bias != nullptr && fused_bias == dwc_bias); // Set build options Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const int window_step_x = size; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); Iterator dwc_w_in(dwc_weights, win); Iterator dwc_w_out(run_in_place_weights ? dwc_weights : fused_weights, win); const auto dwc_bias_in = (dwc_bias != nullptr ? reinterpret_cast(dwc_bias->ptr_to_element(Coordinates(0, 0))) : nullptr); auto dwc_bias_out = (run_in_place_bias ? dwc_bias_in : reinterpret_cast(fused_bias->ptr_to_element(Coordinates(0, 0)))); const auto input_mean = reinterpret_cast(bn_mean->ptr_to_element(Coordinates(0, 0))); const auto input_var = reinterpret_cast(bn_var->ptr_to_element(Coordinates(0, 0))); const auto input_gamma = (bn_gamma != nullptr) ? reinterpret_cast(bn_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr; const auto input_beta = (bn_beta != nullptr) ? reinterpret_cast(bn_beta->ptr_to_element(Coordinates(0, 0))) : nullptr; auto mean_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); auto var_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); auto gamma_vec = wrapper::vdup_n(ScalarType(1), ExactTagType{}); auto beta_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); auto rvar_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); auto dwc_bias_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); const auto epsilon_vec = wrapper::vdup_n(ScalarType(epsilon), ExactTagType{}); auto gamma = ScalarType(1.0); auto beta = ScalarType(0.0); auto dwc_bias_in_scalar = ScalarType(0); execute_window_loop( win, [&](const Coordinates &id) { int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { var_vec = wrapper::vloadq(input_var + x); if (input_gamma != nullptr) { gamma_vec = wrapper::vloadq(input_gamma + x); } if ((id[2] == 0) && (id[1] == 0)) { mean_vec = wrapper::vloadq(input_mean + x); // Construct vectors if (input_beta != nullptr) { beta_vec = wrapper::vloadq(input_beta + x); } if (dwc_bias_in != nullptr) { dwc_bias_vec = wrapper::vloadq(dwc_bias_in + x); } auto dwc_bias_tmp_vec = wrapper::vmul(wrapper::vsub(dwc_bias_vec, mean_vec), wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec))); dwc_bias_tmp_vec = wrapper::vadd(wrapper::vmul(dwc_bias_tmp_vec, gamma_vec), beta_vec); wrapper::vstore(dwc_bias_out + x, dwc_bias_tmp_vec); } auto dwc_w_in_ptr = reinterpret_cast(dwc_w_in.ptr()); auto dwc_w_out_ptr = reinterpret_cast(dwc_w_out.ptr()); auto wn = wrapper::vloadq(dwc_w_in_ptr + x); rvar_vec = wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec)); wn = wrapper::vmul(wn, rvar_vec); wn = wrapper::vmul(wn, gamma_vec); // Store results wrapper::vstore(dwc_w_out_ptr + x, wn); } // Compute left-over elements for (; x < window_end_x; ++x) { auto var = input_var[x]; if (input_gamma != nullptr) { gamma = input_gamma[x]; } if (id[2] == 0 && id[1] == 0) { auto mean = input_mean[x]; if (input_beta != nullptr) { beta = input_beta[x]; } if (dwc_bias_in != nullptr) { dwc_bias_in_scalar = dwc_bias_in[x]; } auto dwc_bias_tmp_scalar = (dwc_bias_in_scalar - mean) / std::sqrt(var + ScalarType(epsilon)); dwc_bias_out[x] = (dwc_bias_tmp_scalar * gamma) + beta; } const auto dwc_w_in_ptr = reinterpret_cast(dwc_w_in.ptr()); auto dwc_w_out_ptr = reinterpret_cast(dwc_w_out.ptr()); *(dwc_w_out_ptr + x) = *(dwc_w_in_ptr + x) / std::sqrt(var + ScalarType(epsilon)) * gamma; } }, dwc_w_in, dwc_w_out); } } // namespace cpu } // namespace arm_compute #endif //SRC_CORE_NEON_KERNELS_FUSE_BATCH_NORMALIZATION_IMPL_H