/* * Copyright (c) 2021-2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ACL_SRC_CPU_KERNELS_FUSE_BATCH_NORMALIZATION_GENERIC_IMPL_H #define ACL_SRC_CPU_KERNELS_FUSE_BATCH_NORMALIZATION_GENERIC_IMPL_H #include "arm_compute/core/Helpers.h" #include "src/core/NEON/wrapper/wrapper.h" namespace arm_compute { namespace cpu { template void batch_normalization_nchw(const Window &window, ITensor *in, ITensor *out, const ITensor *in_mean, const ITensor *in_var, const ITensor *in_beta, const ITensor *in_gamma, float epsilon, ActivationLayerInfo act_info) { /** SIMD vector tag type. */ using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t; const int window_step_x = 16 / sizeof(T); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); Window win_to_use = window; win_to_use.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input(in, win_to_use); Iterator output(out, win_to_use); F activation_functor(act_info); // Hold information about the current feature map we are iterating. // Only compute denominator and constants once per feature map. int slice = -1; const auto input_mean = reinterpret_cast(in_mean->ptr_to_element(Coordinates(0, 0))); const auto input_var = reinterpret_cast(in_var->ptr_to_element(Coordinates(0, 0))); const auto input_gamma = (in_gamma != nullptr) ? reinterpret_cast(in_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr; const auto input_beta = (in_beta != nullptr) ? reinterpret_cast(in_beta->ptr_to_element(Coordinates(0, 0))) : nullptr; T mean = static_cast(0); T var = static_cast(0); T gamma = static_cast(1); T beta = static_cast(0); T denominator = static_cast(0); auto mean_vec = wrapper::vdup_n(mean, ExactTagType{}); auto var_vec = wrapper::vdup_n(var, ExactTagType{}); auto gamma_vec = wrapper::vdup_n(gamma, ExactTagType{}); auto beta_vec = wrapper::vdup_n(beta, ExactTagType{}); auto denominator_vec = wrapper::vdup_n(denominator, ExactTagType{}); const auto epsilon_vec = wrapper::vdup_n(static_cast(epsilon), ExactTagType{}); execute_window_loop( win_to_use, [&](const Coordinates &id) { const auto input_ptr = reinterpret_cast(input.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); if (slice != id.z()) { mean = input_mean[id.z()]; var = input_var[id.z()]; mean_vec = wrapper::vdup_n(mean, ExactTagType{}); var_vec = wrapper::vdup_n(var, ExactTagType{}); if (input_gamma != nullptr) { gamma = input_gamma[id.z()]; gamma_vec = wrapper::vdup_n(gamma, ExactTagType{}); } if (input_beta != nullptr) { beta = input_beta[id.z()]; beta_vec = wrapper::vdup_n(beta, ExactTagType{}); } // Calculate denominator denominator_vec = wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec)); denominator = wrapper::vgetlane(denominator_vec, 0); slice = id.z(); } // Perform core calculations using vector operations int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { // Calculate x bar const auto numerator = wrapper::vsub(wrapper::vloadq(input_ptr + x), mean_vec); const auto x_bar = wrapper::vmul(numerator, denominator_vec); auto res = wrapper::vmla(beta_vec, x_bar, gamma_vec); // Perform fused activation if (fused_activation) { activation_functor(res); } // Store results wrapper::vstore(output_ptr + x, res); } // Compute left-over elements for (; x < window_end_x; ++x) { const T numerator = input_ptr[x] - mean; const T x_bar = numerator * denominator; T res = beta + x_bar * gamma; // Perform fused activation if (fused_activation) { activation_functor(res); } // Store results *(output_ptr + x) = res; } }, input, output); } template void fused_batch_normalization_conv(const ITensor *conv_weights, const ITensor *conv_bias, ITensor *fused_weights, ITensor *fused_bias, const ITensor *bn_mean, const ITensor *bn_var, const ITensor *bn_beta, const ITensor *bn_gamma, float epsilon, const Window &window) { using ScalarType = T; const int size = 16 / conv_weights->info()->element_size(); using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t; const bool run_in_place_weights = (fused_weights == nullptr) || (fused_weights == conv_weights); const bool run_in_place_bias = (fused_bias == nullptr) || (conv_bias != nullptr && fused_bias == conv_bias); // Set build options Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const int window_step_x = size; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); Iterator conv_w_in(conv_weights, win); Iterator conv_w_out(run_in_place_weights ? conv_weights : fused_weights, win); const auto conv_bias_in = (conv_bias != nullptr ? reinterpret_cast(conv_bias->ptr_to_element(Coordinates(0, 0))) : nullptr); auto conv_bias_out = (run_in_place_bias ? conv_bias_in : reinterpret_cast(fused_bias->ptr_to_element(Coordinates(0, 0)))); const auto input_mean = reinterpret_cast(bn_mean->ptr_to_element(Coordinates(0, 0))); const auto input_var = reinterpret_cast(bn_var->ptr_to_element(Coordinates(0, 0))); const auto input_gamma = (bn_gamma != nullptr) ? reinterpret_cast(bn_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr; const auto input_beta = (bn_beta != nullptr) ? reinterpret_cast(bn_beta->ptr_to_element(Coordinates(0, 0))) : nullptr; auto mean_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); auto var_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); auto gamma_vec = wrapper::vdup_n(ScalarType(1), ExactTagType{}); auto beta_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); auto rvar_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); const auto epsilon_vec = wrapper::vdup_n(ScalarType(epsilon), ExactTagType{}); auto mean = ScalarType(0.0); auto var = ScalarType(0.0); auto gamma = ScalarType(1.0); auto beta = ScalarType(0.0); auto conv_bias_in_scalar = ScalarType(0.0); execute_window_loop( win, [&](const Coordinates &id) { var = input_var[id[3]]; if (input_gamma != nullptr) { gamma = input_gamma[id[3]]; } if ((id[0] == 0) && (id[1] == 0) && (id[2] == 0)) { if (input_beta != nullptr) { beta = input_beta[id[3]]; beta_vec = wrapper::vdup_n(beta, ExactTagType{}); } // Construct vectors mean = input_mean[id[3]]; mean_vec = wrapper::vdup_n(mean, ExactTagType{}); if (conv_bias_in != nullptr) { conv_bias_in_scalar = conv_bias_in[id[3]]; } auto conv_bias_tmp_scalar = (conv_bias_in_scalar - mean) / std::sqrt(var + ScalarType(epsilon)); conv_bias_out[id[3]] = (conv_bias_tmp_scalar * gamma) + beta; } int x = window_start_x; auto conv_w_in_ptr = reinterpret_cast(conv_w_in.ptr()); auto conv_w_out_ptr = reinterpret_cast(conv_w_out.ptr()); var_vec = wrapper::vdup_n(var, ExactTagType{}); gamma_vec = wrapper::vdup_n(gamma, ExactTagType{}); rvar_vec = wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec)); for (; x <= (window_end_x - window_step_x); x += window_step_x) { auto wn = wrapper::vloadq(conv_w_in_ptr + x); wn = wrapper::vmul(wn, rvar_vec); wn = wrapper::vmul(wn, gamma_vec); // Store results wrapper::vstore(conv_w_out_ptr + x, wn); } // Compute left-over elements for (; x < window_end_x; ++x) { *(conv_w_out_ptr + x) = *(conv_w_in_ptr + x) / std::sqrt(var + ScalarType(epsilon)) * gamma; } }, conv_w_in, conv_w_out); } template void fused_batch_normalization_dwc_nchw(const ITensor *dwc_weights, const ITensor *dwc_bias, ITensor *fused_weights, ITensor *fused_bias, const ITensor *bn_mean, const ITensor *bn_var, const ITensor *bn_beta, const ITensor *bn_gamma, float epsilon, const Window &window) { using ScalarType = T; const int size = 16 / dwc_weights->info()->element_size(); using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t; const bool run_in_place_weights = (fused_weights == nullptr) || (fused_weights == dwc_weights); const bool run_in_place_bias = (fused_bias == nullptr) || (dwc_bias != nullptr && fused_bias == dwc_bias); // Set build options Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const int window_step_x = size; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); Iterator dwc_w_in(dwc_weights, win); Iterator dwc_w_out(run_in_place_weights ? dwc_weights : fused_weights, win); const auto dwc_bias_in = (dwc_bias != nullptr ? reinterpret_cast(dwc_bias->ptr_to_element(Coordinates(0, 0))) : nullptr); auto dwc_bias_out = (run_in_place_bias ? dwc_bias_in : reinterpret_cast(fused_bias->ptr_to_element(Coordinates(0, 0)))); const auto input_mean = reinterpret_cast(bn_mean->ptr_to_element(Coordinates(0, 0))); const auto input_var = reinterpret_cast(bn_var->ptr_to_element(Coordinates(0, 0))); const auto input_gamma = (bn_gamma != nullptr) ? reinterpret_cast(bn_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr; const auto input_beta = (bn_beta != nullptr) ? reinterpret_cast(bn_beta->ptr_to_element(Coordinates(0, 0))) : nullptr; auto mean_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); auto var_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); auto gamma_vec = wrapper::vdup_n(ScalarType(1), ExactTagType{}); auto beta_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); auto rvar_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); const auto epsilon_vec = wrapper::vdup_n(ScalarType(epsilon), ExactTagType{}); auto mean = ScalarType(0.0); auto var = ScalarType(0.0); auto gamma = ScalarType(1.0); auto beta = ScalarType(0.0); auto dwc_bias_in_scalar = ScalarType(0.0); execute_window_loop( win, [&](const Coordinates &id) { var = input_var[id[2]]; if (input_gamma != nullptr) { gamma = input_gamma[id[2]]; } if (id[1] == 0) { mean = input_mean[id[2]]; // Construct vectors mean_vec = wrapper::vdup_n(mean, ExactTagType{}); if (input_beta != nullptr) { beta = input_beta[id[2]]; beta_vec = wrapper::vdup_n(beta, ExactTagType{}); } if (dwc_bias_in != nullptr) { dwc_bias_in_scalar = dwc_bias_in[id[2]]; } auto dwc_bias_tmp_scalar = (dwc_bias_in_scalar - mean) / std::sqrt(var + ScalarType(epsilon)); dwc_bias_out[id[2]] = (dwc_bias_tmp_scalar * gamma) + beta; } int x = window_start_x; auto dwc_w_in_ptr = reinterpret_cast(dwc_w_in.ptr()); auto dwc_w_out_ptr = reinterpret_cast(dwc_w_out.ptr()); var_vec = wrapper::vdup_n(var, ExactTagType{}); gamma_vec = wrapper::vdup_n(gamma, ExactTagType{}); rvar_vec = wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec)); for (; x <= (window_end_x - window_step_x); x += window_step_x) { auto wn = wrapper::vloadq(dwc_w_in_ptr + x); wn = wrapper::vmul(wn, rvar_vec); wn = wrapper::vmul(wn, gamma_vec); // Store results wrapper::vstore(dwc_w_out_ptr + x, wn); } // Compute left-over elements for (; x < window_end_x; ++x) { *(dwc_w_out_ptr + x) = *(dwc_w_in_ptr + x) / std::sqrt(var + ScalarType(epsilon)) * gamma; } }, dwc_w_in, dwc_w_out); } } // namespace cpu } // namespace arm_compute #endif // ACL_SRC_CPU_KERNELS_FUSE_BATCH_NORMALIZATION_GENERIC_IMPL_H