/* * Copyright (c) 2018-2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef SRC_CORE_NEON_KERNELS_ELEMENTWISE_UNARY_LIST_H #define SRC_CORE_NEON_KERNELS_ELEMENTWISE_UNARY_LIST_H #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Types.h" #include "src/core/NEON/NEAsymm.h" #include "src/core/NEON/wrapper/intrinsics/intrinsics.h" namespace arm_compute { namespace cpu { template inline ScalarType elementwise_op_scalar_imp(ElementWiseUnary op, const ScalarType &a) { switch (op) { case ElementWiseUnary::RSQRT: return 1 / sqrt(a); case ElementWiseUnary::EXP: return std::exp(a); case ElementWiseUnary::NEG: return -a; case ElementWiseUnary::LOG: return std::log(a); case ElementWiseUnary::ABS: return std::abs(a); case ElementWiseUnary::ROUND: return support::cpp11::nearbyint(a); case ElementWiseUnary::SIN: return std::sin(a); default: ARM_COMPUTE_ERROR("NOT_SUPPORTED!"); } } template inline VectorType elementwise_op_imp(ElementWiseUnary op, const VectorType &a) { switch (op) { case ElementWiseUnary::RSQRT: return wrapper::vinvsqrt(a); case ElementWiseUnary::EXP: return wrapper::vexpq(a); case ElementWiseUnary::NEG: return wrapper::vneg(a); case ElementWiseUnary::LOG: return wrapper::vlog(a); case ElementWiseUnary::ABS: return wrapper::vabs(a); case ElementWiseUnary::ROUND: return wrapper::vround(a); case ElementWiseUnary::SIN: return wrapper::vsin(a); default: ARM_COMPUTE_ERROR("NOT_SUPPORTED!"); } } template inline void elementwise_op(const ITensor *in, ITensor *out, const Window &window, ElementWiseUnary op) { const int window_step_x = 16 / sizeof(ScalarType); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input(in, win); Iterator output(out, win); execute_window_loop( win, [&](const Coordinates &) { auto output_ptr = reinterpret_cast(output.ptr()); const auto input_ptr = reinterpret_cast(input.ptr()); int x = window_start_x; for (; x <= window_end_x - window_step_x; x += window_step_x) { wrapper::vstore(output_ptr + x, elementwise_op_imp(op, wrapper::vloadq(input_ptr + x))); } for (; x < window_end_x; ++x) { *(output_ptr + x) = elementwise_op_scalar_imp(op, *(input_ptr + x)); } }, input, output); } template <> inline void elementwise_op(const ITensor *in, ITensor *out, const Window &window, ElementWiseUnary op) { const int window_step_x = 16; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const UniformQuantizationInfo qi_in = in->info()->quantization_info().uniform(); const UniformQuantizationInfo qi_out = out->info()->quantization_info().uniform(); const auto min_clamped_value = vdupq_n_f32((-128 - qi_out.offset) * qi_out.scale); const auto max_clamped_value = vdupq_n_f32((127 - qi_out.offset) * qi_out.scale); Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input(in, win); Iterator output(out, win); execute_window_loop( win, [&](const Coordinates &) { int8x16_t vout; auto output_ptr = reinterpret_cast(output.ptr()); const auto input_ptr = reinterpret_cast(input.ptr()); const auto vconst_0_f32 = vdupq_n_f32(0); auto clamped_value = (op == ElementWiseUnary::LOG) ? min_clamped_value : max_clamped_value; int x = window_start_x; for (; x <= window_end_x - window_step_x; x += window_step_x) { const auto vin = wrapper::vloadq(input_ptr + x); // De-quantize const auto vin_deq = vdequantize(vin, qi_in); // Perform activation float32x4x4_t vtmp_deq = {{ elementwise_op_imp(op, vin_deq.val[0]), elementwise_op_imp(op, vin_deq.val[1]), elementwise_op_imp(op, vin_deq.val[2]), elementwise_op_imp(op, vin_deq.val[3]), }}; if ((op == ElementWiseUnary::LOG) || (op == ElementWiseUnary::RSQRT)) { vtmp_deq.val[0] = vbslq_f32(vcleq_f32(vin_deq.val[0], vconst_0_f32), clamped_value, vtmp_deq.val[0]); vtmp_deq.val[1] = vbslq_f32(vcleq_f32(vin_deq.val[1], vconst_0_f32), clamped_value, vtmp_deq.val[1]); vtmp_deq.val[2] = vbslq_f32(vcleq_f32(vin_deq.val[2], vconst_0_f32), clamped_value, vtmp_deq.val[2]); vtmp_deq.val[3] = vbslq_f32(vcleq_f32(vin_deq.val[3], vconst_0_f32), clamped_value, vtmp_deq.val[3]); } // Re-quantize to new output space vout = vquantize_signed(vtmp_deq, qi_out); wrapper::vstore(output_ptr + x, vout); } for (; x < window_end_x; ++x) { qasymm8_signed_t in = *(reinterpret_cast(input_ptr + x)); qasymm8_signed_t tmp = 0; float tmp_f = dequantize_qasymm8_signed(in, qi_in); if (tmp_f <= 0.0) { if (op == ElementWiseUnary::LOG) { tmp_f = (-128 - qi_out.offset) * qi_out.scale; } else if (op == ElementWiseUnary::RSQRT) { tmp_f = (127 - qi_out.offset) * qi_out.scale; } else { tmp_f = elementwise_op_scalar_imp(op, tmp_f); } } else { tmp_f = elementwise_op_scalar_imp(op, tmp_f); } tmp = quantize_qasymm8_signed( tmp_f, qi_out, RoundingPolicy:: TO_ZERO); // Set rounding policy TO_ZERO to be compatible with vquantize_signed() used above that follow same policy for armv7a. // For aarch64 LUT is used and rounding to nearest is used *(output_ptr + x) = tmp; } }, input, output); } template <> inline void elementwise_op(const ITensor *in, ITensor *out, const Window &window, ElementWiseUnary op) { const int window_step_x = 16; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const UniformQuantizationInfo qi_in = in->info()->quantization_info().uniform(); const UniformQuantizationInfo qi_out = out->info()->quantization_info().uniform(); const auto vconst_0_f32 = vdupq_n_f32(0); const auto min_clamped_value = vdupq_n_f32((0 - qi_out.offset) * qi_out.scale); const auto max_clamped_value = vdupq_n_f32((255 - qi_out.offset) * qi_out.scale); Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input(in, win); Iterator output(out, win); execute_window_loop( win, [&](const Coordinates &) { uint8x16_t vout; auto clamped_value = (op == ElementWiseUnary::LOG) ? min_clamped_value : max_clamped_value; auto output_ptr = reinterpret_cast(output.ptr()); const auto input_ptr = reinterpret_cast(input.ptr()); int x = window_start_x; for (; x <= window_end_x - window_step_x; x += window_step_x) { const auto vin = wrapper::vloadq(input_ptr + x); // De-quantize const auto vin_deq = vdequantize(vin, qi_in); // Perform activation float32x4x4_t vtmp_deq = {{ elementwise_op_imp(op, vin_deq.val[0]), elementwise_op_imp(op, vin_deq.val[1]), elementwise_op_imp(op, vin_deq.val[2]), elementwise_op_imp(op, vin_deq.val[3]), }}; if ((op == ElementWiseUnary::LOG) || (op == ElementWiseUnary::RSQRT)) { vtmp_deq.val[0] = vbslq_f32(vcleq_f32(vin_deq.val[0], vconst_0_f32), clamped_value, vtmp_deq.val[0]); vtmp_deq.val[1] = vbslq_f32(vcleq_f32(vin_deq.val[1], vconst_0_f32), clamped_value, vtmp_deq.val[1]); vtmp_deq.val[2] = vbslq_f32(vcleq_f32(vin_deq.val[2], vconst_0_f32), clamped_value, vtmp_deq.val[2]); vtmp_deq.val[3] = vbslq_f32(vcleq_f32(vin_deq.val[3], vconst_0_f32), clamped_value, vtmp_deq.val[3]); } // Re-quantize to new output space vout = vquantize(vtmp_deq, qi_out); wrapper::vstore(output_ptr + x, vout); } for (; x < window_end_x; ++x) { qasymm8_t in = *(reinterpret_cast(input_ptr + x)); qasymm8_t tmp = 0; float tmp_f = dequantize_qasymm8(in, qi_in); if (tmp_f <= 0.0) { if (op == ElementWiseUnary::LOG) { tmp_f = (0 - qi_out.offset) * qi_out.scale; } else if (op == ElementWiseUnary::RSQRT) { tmp_f = (255 - qi_out.offset) * qi_out.scale; } else { tmp_f = elementwise_op_scalar_imp(op, tmp_f); } } else { tmp_f = elementwise_op_scalar_imp(op, tmp_f); } tmp = quantize_qasymm8(tmp_f, qi_out, RoundingPolicy::TO_ZERO); *(output_ptr + x) = tmp; } }, input, output); } } // namespace cpu } // namespace arm_compute #endif // SRC_CORE_NEON_KERNELS_ELEMENTWISE_UNARY_LIST_H