/* * Copyright (c) 2021-2022 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/cpu/kernels/elementwise_binary/generic/sve/impl.h" #include "src/core/NEON/SVEMath.h" #include namespace arm_compute { namespace cpu { using namespace arm_compute::wrapper; template void elementwise_arithmetic_op( const ITensor *in1, const ITensor *in2, ITensor *out, ArithmeticOperation op, const Window &window) { using VectorType = typename sve_vector::type; const auto all_true_pg = svptrue(); // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x(); if (is_broadcast_across_x) { const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1; // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(out, win); execute_window_loop( win, [&](const Coordinates &) { auto output_ptr = reinterpret_cast(output.ptr()); const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const ScalarType broadcast_value = *reinterpret_cast(broadcast_input.ptr()); const auto broadcast_vector = svdup_n(broadcast_value); int x = window_start_x; svbool_t pg = svwhilelt(x, window_end_x); do { const auto non_broadcast_vector = svld1(pg, non_broadcast_input_ptr + x); VectorType res{}; if (is_broadcast_input_2) { res = elementwise_arithmetic_op::type>(pg, non_broadcast_vector, broadcast_vector, op); } else { res = elementwise_arithmetic_op::type>( pg, broadcast_vector, non_broadcast_vector, op); } svst1(pg, output_ptr + x, res); x += svcnt(); pg = svwhilelt(x, window_end_x); } while (svptest_any(all_true_pg, pg)); }, broadcast_input, non_broadcast_input, output); } else { // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); execute_window_loop( win, [&](const Coordinates &) { auto output_ptr = reinterpret_cast(output.ptr()); const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); int x = window_start_x; svbool_t pg = svwhilelt(x, window_end_x); do { const auto in1 = svld1(pg, input1_ptr + x); const auto in2 = svld1(pg, input2_ptr + x); const auto res = elementwise_arithmetic_op::type>(pg, in1, in2, op); svst1(pg, output_ptr + x, res); x += svcnt(); pg = svwhilelt(x, window_end_x); } while (svptest_any(all_true_pg, pg)); }, input1, input2, output); } } template void elementwise_arithmetic_op( const ITensor *in1, const ITensor *in2, ITensor *out, const ArithmeticOperation op, const Window &window); template void elementwise_arithmetic_op( const ITensor *in1, const ITensor *in2, ITensor *out, const ArithmeticOperation op, const Window &window); template void elementwise_arithmetic_op( const ITensor *in1, const ITensor *in2, ITensor *out, const ArithmeticOperation op, const Window &window); template void elementwise_arithmetic_op( const ITensor *in1, const ITensor *in2, ITensor *out, const ArithmeticOperation op, const Window &window); template void elementwise_comparison_op( const ITensor *in1, const ITensor *in2, ITensor *out, ComparisonOperation op, const Window &window) { static_assert(sizeof(InputScalarType) >= sizeof(OutputScalarType), "input data type's width should be equal to or greater than output data type's width"); using OutputVectorType = typename sve_vector::type; const auto all_true_pg = svptrue(); // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x(); if (is_broadcast_across_x) { const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1; // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(out, win); execute_window_loop( win, [&](const Coordinates &) { auto output_ptr = reinterpret_cast(output.ptr()); const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const InputScalarType broadcast_value = *reinterpret_cast(broadcast_input.ptr()); const auto broadcast_vector = svdup_n(broadcast_value); int x = window_start_x; svbool_t pg = svwhilelt(x, window_end_x); do { const auto non_broadcast_vector = svld1(pg, non_broadcast_input_ptr + x); const svbool_t output_pg = narrow_to_byte_predicate(pg); OutputVectorType res{}; if (is_broadcast_input_2) { res = elementwise_comparison_op::type, typename sve_vector::type>( pg, non_broadcast_vector, broadcast_vector, op); } else { res = elementwise_comparison_op::type, typename sve_vector::type>( pg, broadcast_vector, non_broadcast_vector, op); } svst1(output_pg, output_ptr + x, res); x += svcnt(); pg = svwhilelt(x, window_end_x); } while (svptest_any(all_true_pg, pg)); }, broadcast_input, non_broadcast_input, output); } else { // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); execute_window_loop( win, [&](const Coordinates &) { auto output_ptr = reinterpret_cast(output.ptr()); const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); int x = window_start_x; svbool_t pg = svwhilelt(x, window_end_x); do { const auto in1 = svld1(pg, input1_ptr + x); const auto in2 = svld1(pg, input2_ptr + x); const auto res = elementwise_comparison_op::type, typename sve_vector::type>(pg, in1, in2, op); const svbool_t output_pg = narrow_to_byte_predicate(pg); svst1(output_pg, output_ptr + x, res); x += svcnt(); pg = svwhilelt(x, window_end_x); } while (svptest_any(all_true_pg, pg)); }, input1, input2, output); } } template void elementwise_comparison_op( const ITensor *in1, const ITensor *in2, ITensor *out, const ComparisonOperation op, const Window &window); template void elementwise_comparison_op( const ITensor *in1, const ITensor *in2, ITensor *out, const ComparisonOperation op, const Window &window); template void elementwise_comparison_op( const ITensor *in1, const ITensor *in2, ITensor *out, const ComparisonOperation op, const Window &window); template void elementwise_comparison_op( const ITensor *in1, const ITensor *in2, ITensor *out, const ComparisonOperation op, const Window &window); template void elementwise_comparison_op( const ITensor *in1, const ITensor *in2, ITensor *out, const ComparisonOperation op, const Window &window); template <> svint32_t elementwise_pow(svbool_t &pg, const svint32_t &a, const svint32_t &b) { return svcvt_s32_z(pg, svpow_z(pg, svcvt_f32_z(pg, a), svcvt_f32_z(pg, b))); } template <> svint32_t elementwise_div(svbool_t &pg, const svint32_t &a, const svint32_t &b) { return svcvt_s32_z(pg, svdiv_z(pg, svcvt_f32_z(pg, a), svcvt_f32_z(pg, b))); } template <> svint16_t elementwise_div(svbool_t &pg, const svint16_t &a, const svint16_t &b) { ARM_COMPUTE_UNUSED(pg, a, b); ARM_COMPUTE_ERROR("Not supported"); } } // namespace cpu } // namespace arm_compute