/* * Copyright (c) 2022-2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ACL_SRC_CPU_KERNELS_DIRECTCONV2D_IMPL_H #define ACL_SRC_CPU_KERNELS_DIRECTCONV2D_IMPL_H #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/IAccessWindow.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "src/core/helpers/WindowHelpers.h" #include "src/core/NEON/kernels/detail/NEDirectConvolutionDetail.h" #include "src/core/NEON/wrapper/wrapper.h" #include namespace arm_compute { namespace cpu { namespace kernels { template void linearize_volume_nchw(const uint8_t *const in_ptr, T *out_ptr, bool has_bias, int top_left_x, int top_left_y, int kernel_width, int kernel_height, int kernel_depth, int input_w, int input_h, int input_stride_x, int input_stride_y, int input_stride_z, int pad_value, int dilation_x, int dilation_y) { const int kernel_size2 = kernel_width * kernel_height; const int x_e = top_left_x + kernel_width * dilation_x; const int y_e = top_left_y + kernel_height * dilation_y; // Linearize volume int d = 0; // This for loop linearize a volume with 3 slices. This allows: // 1) to reduce the iterations of the outer for loop "d" // 2) to have an optimized im2col for the first convolution layer where usually we have 3 IFMs for (; d <= (kernel_depth - 3); d += 3) { for (int y = top_left_y; y < y_e; y += dilation_y) { if ((y < 0 || y >= input_h) && has_pads) { // All the values will be the offset (will be zeros when not quantized) for (int x = top_left_x; x < x_e; x += dilation_x, ++out_ptr) { *(out_ptr + 0 * kernel_size2) = pad_value; *(out_ptr + 1 * kernel_size2) = pad_value; *(out_ptr + 2 * kernel_size2) = pad_value; } } else { for (int x = top_left_x; x < x_e; x += dilation_x, ++out_ptr) { if ((x < 0 || x >= input_w) && has_pads) { *(out_ptr + 0 * kernel_size2) = pad_value; *(out_ptr + 1 * kernel_size2) = pad_value; *(out_ptr + 2 * kernel_size2) = pad_value; } else { *(out_ptr + 0 * kernel_size2) = *(reinterpret_cast( in_ptr + ((d + 0) * input_stride_z + y * input_stride_y + x * input_stride_x))); *(out_ptr + 1 * kernel_size2) = *(reinterpret_cast( in_ptr + ((d + 1) * input_stride_z + y * input_stride_y + x * input_stride_x))); *(out_ptr + 2 * kernel_size2) = *(reinterpret_cast( in_ptr + ((d + 2) * input_stride_z + y * input_stride_y + x * input_stride_x))); } } } } out_ptr += 2 * kernel_size2; } // Left over for (; d < kernel_depth; d++) { for (int y = top_left_y; y < y_e; y += dilation_y) { if ((y < 0 || y >= input_h) && has_pads) { // All the values will be the offset (will be zeros when not quantized) memset(static_cast(out_ptr), pad_value, kernel_width * sizeof(T)); out_ptr += kernel_width; } else { for (int x = top_left_x; x < x_e; x += dilation_x, ++out_ptr) { if ((x < 0 || x >= input_w) && has_pads) { *out_ptr = pad_value; } else { *out_ptr = *(reinterpret_cast( in_ptr + (d * input_stride_z + y * input_stride_y + x * input_stride_x))); } } } } } // Append 1 if the convolution layer has biases if (has_bias) { *out_ptr = static_cast(1); } } template void linearize_volume_nhwc(const uint8_t *const in_ptr, T *out_ptr, bool has_bias, int start_x, int start_y, int kernel_width, int kernel_height, int input_w, int input_h, int input_c, int input_stride_y, int input_stride_z, int pad_value, int dilation_x, int dilation_y) { const int end_x = start_x + kernel_width * dilation_x; const int end_y = start_y + kernel_height * dilation_y; const int pad_quant = kernel_width * input_c; const int element_size = static_cast(sizeof(T)); if ((start_y >= 0) && (end_y < input_h) && (start_x >= 0) && (end_x < input_w) && (dilation_x == 1) && (input_stride_y == input_c * element_size)) { for (int y = start_y; y < end_y; y += dilation_y) { //optimized for no dilation and no boundary pixels memcpy(out_ptr, reinterpret_cast(in_ptr + (y * input_stride_z + start_x * input_stride_y)), input_c * kernel_width * element_size); out_ptr += input_c * kernel_width; } } else { for (int y = start_y; y < end_y; y += dilation_y) { if (y < 0 || y >= input_h) { memset(static_cast(out_ptr), pad_value, pad_quant * element_size); out_ptr += pad_quant; } else if (dilation_x > 1 || start_x < 0 || end_x >= input_w || input_stride_y != input_c * element_size) { for (int x = start_x; x < end_x; x += dilation_x) { if (x < 0 || x >= input_w) { memset(static_cast(out_ptr), pad_value, input_c * element_size); out_ptr += input_c; } else { memcpy(out_ptr, reinterpret_cast(in_ptr + (y * input_stride_z + x * input_stride_y)), input_c * element_size); out_ptr += input_c; } } } else { //optimized for no dilation and no boundary pixels memcpy(out_ptr, reinterpret_cast(in_ptr + (y * input_stride_z + start_x * input_stride_y)), input_c * kernel_width * element_size); out_ptr += input_c * kernel_width; } } } // Append 1 if the convolution layer has biases if (has_bias) { *out_ptr = static_cast(1); } } template void linearize_volume_nhwc(const uint8_t *const in_ptr, T *out_ptr, bool has_bias, int start_x, int start_y, int kernel_width, int kernel_height, int input_w, int input_h, int input_c, int input_stride_y, int input_stride_z, int pad_value, int dilation_x, int dilation_y, int pad_right) { const int end_x = start_x + kernel_width * dilation_x; const int end_y = start_y + kernel_height * dilation_y; const int pad_quant = kernel_width * (input_c + pad_right); const int element_size = static_cast(sizeof(T)); const int channel_chunk_size = input_c * element_size; if ((start_y >= 0) && (end_y < input_h) && (start_x >= 0) && (end_x < input_w) && (dilation_x == 1) && (input_stride_y == channel_chunk_size)) { for (int y = start_y; y < end_y; y += dilation_y) { const uint8_t *offset_ptr = in_ptr + (y * input_stride_z + start_x * input_stride_y); for (int e = 0; e < kernel_width; e++) { memcpy(out_ptr, reinterpret_cast(offset_ptr + e * channel_chunk_size), channel_chunk_size); out_ptr += input_c + pad_right; } } } else { for (int y = start_y; y < end_y; y += dilation_y) { if (y < 0 || y >= input_h) { memset(static_cast(out_ptr), pad_value, pad_quant * element_size); out_ptr += pad_quant; } else if (dilation_x > 1 || start_x < 0 || end_x >= input_w || input_stride_y != channel_chunk_size) { for (int x = start_x; x < end_x; x += dilation_x) { if (x < 0 || x >= input_w) { memset(static_cast(out_ptr), pad_value, (input_c + pad_right) * element_size); out_ptr += input_c + pad_right; } else { memcpy(out_ptr, reinterpret_cast(in_ptr + (y * input_stride_z + x * input_stride_y)), channel_chunk_size); out_ptr += input_c + pad_right; } } } else { const uint8_t *offset_ptr = in_ptr + (y * input_stride_z + start_x * input_stride_y); for (int e = 0; e < kernel_width; e++) { memcpy(out_ptr, reinterpret_cast(offset_ptr + e * channel_chunk_size), channel_chunk_size); out_ptr += input_c + pad_right; } } } } // Append 1 if the convolution layer has biases if (has_bias) { *out_ptr = static_cast(1); } } template void run_im2col(const ITensor *src, ITensor *dst, const Window &window, DataLayout data_layout, const PadStrideInfo &conv_info, std::pair convolved_dims, const Size2D &kernel_dims, const Size2D &dilation, uint32_t input_pad_right, bool has_bias) { const unsigned int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const unsigned int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const unsigned int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL); const int input_w = src->info()->dimension(width_idx); const int input_h = src->info()->dimension(height_idx); const int input_c = src->info()->dimension(channel_idx); const int input_stride_x = src->info()->strides_in_bytes().x(); const int input_stride_y = src->info()->strides_in_bytes().y(); const int input_stride_z = src->info()->strides_in_bytes().z(); const int pad_left = conv_info.pad_left(); const int pad_top = conv_info.pad_top(); const int stride_x = conv_info.stride().first; const int stride_y = conv_info.stride().second; const int pad_value = is_data_type_quantized(src->info()->data_type()) ? src->info()->quantization_info().uniform().offset : 0; const auto kernel_width = kernel_dims.width; const auto kernel_height = kernel_dims.height; Window window_in_out(window); // The first three dimensions of the input and output are increased by the inner loops window_in_out.set(Window::DimX, Window::Dimension(0, 0, 0)); window_in_out.set(Window::DimY, Window::Dimension(0, 0, 0)); window_in_out.set(Window::DimZ, Window::Dimension(0, 0, 0)); // Create iterators Iterator in(src, window_in_out); Iterator out(dst, window_in_out); execute_window_loop( window, [&](const Coordinates &id) { const int start_w = id[width_idx] * stride_x - pad_left; const int start_h = id[height_idx] * stride_y - pad_top; // Get pointers const uint8_t *const input_ptr = in.ptr(); auto output_ptr = reinterpret_cast(out.ptr() + (id[width_idx] + id[height_idx] * convolved_dims.first) * dst->info()->strides_in_bytes().y()); // Linearize volume if (is_nchw) { linearize_volume_nchw( input_ptr, output_ptr, has_bias, start_w, start_h, kernel_width, kernel_height, input_c, input_w, input_h, input_stride_x, input_stride_y, input_stride_z, pad_value, dilation.x(), dilation.y()); } else { if (input_pad_right > 0) { linearize_volume_nhwc(input_ptr, output_ptr, has_bias, start_w, start_h, kernel_width, kernel_height, input_w, input_h, input_c, input_stride_y, input_stride_z, pad_value, dilation.x(), dilation.y(), input_pad_right); } else { linearize_volume_nhwc(input_ptr, output_ptr, has_bias, start_w, start_h, kernel_width, kernel_height, input_w, input_h, input_c, input_stride_y, input_stride_z, pad_value, dilation.x(), dilation.y()); } } }, in, out); } } // namespace kernels } // namespace cpu } // namespace arm_compute #endif // ACL_SRC_CPU_KERNELS_DIRECTCONV2D_IMPL_H