/* * Copyright (c) 2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef SRC_CORE_NEON_KERNELS_CONV3D_LIST_H #define SRC_CORE_NEON_KERNELS_CONV3D_LIST_H #include "arm_compute/core/Types.h" #include "arm_compute/core/utils/misc/Traits.h" #include "arm_compute/runtime/FunctionDescriptors.h" #include "src/core/helpers/WindowHelpers.h" #include "src/core/NEON/wrapper/wrapper.h" #include "src/cpu/kernels/conv3d/neon/quantized.h" namespace arm_compute { namespace cpu { template void directconv3d_float_neon_ndhwc(const ITensor *src0, const ITensor *src1, const ITensor *src2, ITensor *dst, const Conv3dInfo &conv_info, const Window &window) { const ITensor *src = src0; const ITensor *weights = src1; const ITensor *biases = src2; using vtype = wrapper::traits::neon_bitvector; using vector_type = typename vtype::type; using tag_type = typename vtype::tag_type; constexpr int num_elems_read_per_iteration = 16 / sizeof(T); // Scalar quantities (N D H W Cin) const int element_size = src->info()->element_size(); const int input_stride_w = src->info()->strides_in_bytes().y() / element_size; const int input_stride_h = src->info()->strides_in_bytes().z() / element_size; const int input_stride_d = src->info()->strides_in_bytes()[3] / element_size; const int input_stride_n = src->info()->strides_in_bytes()[4] / element_size; const int input_dim_w = src->info()->dimension(1); const int input_dim_h = src->info()->dimension(2); const int input_dim_d = src->info()->dimension(3); // Kernel info (D H W Cin Cout) const unsigned int kernel_stride_w = weights->info()->strides_in_bytes()[2] / element_size; const unsigned int kernel_stride_h = weights->info()->strides_in_bytes()[3] / element_size; const unsigned int kernel_stride_d = weights->info()->strides_in_bytes()[4] / element_size; const int kernel_dim_w = weights->info()->dimension(2); const int kernel_dim_h = weights->info()->dimension(3); const int kernel_dim_d = weights->info()->dimension(4); // Convolution padding and stride const int conv_pad_top = conv_info.padding.top; const int conv_pad_left = conv_info.padding.left; const int conv_pad_front = conv_info.padding.front; const int conv_stride_w = conv_info.stride.width; const int conv_stride_h = conv_info.stride.height; const int conv_stride_d = conv_info.stride.depth; // Setup input window for the output iterator Window window_out = window; window_out.set(Window::DimX, Window::Dimension(0, 1, 1)); // Setup input window for the weights iterator Window window_w = calculate_max_window(*weights->info(), Steps()); window_w.set(Window::DimY, Window::Dimension(0, 1, 1)); window_w.set(Window::DimZ, Window::Dimension(0, 1, 1)); window_w.set(Window::DimW, Window::Dimension(0, 1, 1)); window_w.set(4, Window::Dimension(0, 1, 1)); Iterator out(dst, window_out); Iterator wei(weights, window_w); const T *biases_ptr = nullptr; if (biases != nullptr) { biases_ptr = reinterpret_cast(biases->buffer() + biases->info()->offset_first_element_in_bytes()); } execute_window_loop( window_out, [&](const Coordinates &id) { // We are computing the theoretical input starting points const int in_w_start_t = static_cast(id.y()) * conv_stride_w - conv_pad_left; const int in_h_start_t = static_cast(id.z()) * conv_stride_h - conv_pad_top; const int in_d_start_t = static_cast(id[3]) * conv_stride_d - conv_pad_front; const int in_w_end_t = in_w_start_t + kernel_dim_w; const int in_h_end_t = in_h_start_t + kernel_dim_h; const int in_d_end_t = in_d_start_t + kernel_dim_d; // We are computing the valid initial and ending input points by checking the borders const int in_w_start = std::max(in_w_start_t, 0); const int in_h_start = std::max(in_h_start_t, 0); const int in_d_start = std::max(in_d_start_t, 0); const int in_w_end = std::min(in_w_end_t, input_dim_w); const int in_h_end = std::min(in_h_end_t, input_dim_h); const int in_d_end = std::min(in_d_end_t, input_dim_d); // We use the input points to select the valid weight points to use const int wei_w_start = in_w_start - in_w_start_t; const int wei_h_start = in_h_start - in_h_start_t; const int wei_d_start = in_d_start - in_d_start_t; const int wei_w_end = kernel_dim_w - (in_w_end_t - in_w_end); const int wei_h_end = kernel_dim_h - (in_h_end_t - in_h_end); const int wei_d_end = kernel_dim_d - (in_d_end_t - in_d_end); const int index_c_out_end = weights->info()->dimension(0); const int index_c_in_end = weights->info()->dimension(1); const T *const in_ptr_start = reinterpret_cast(src->buffer() + src->info()->offset_first_element_in_bytes()) + id[4] * input_stride_n; execute_window_loop( window_w, [&](const Coordinates &id_w) { /* * This is the loop in the weights, and it goes along OFM (output feature map) */ const auto weights_ptr_start = reinterpret_cast(wei.ptr()); T out_temp = static_cast(0); T *out_ptr = reinterpret_cast(out.ptr()); for (int index_wei_d = wei_d_start, index_in_d = in_d_start; index_wei_d < wei_d_end; ++index_wei_d, ++index_in_d) { const auto in_ptr_d = in_ptr_start + index_in_d * input_stride_d; const auto weights_ptr_d = weights_ptr_start + index_wei_d * kernel_stride_d; for (int index_wei_h = wei_h_start, index_in_h = in_h_start; index_wei_h < wei_h_end; ++index_wei_h, ++index_in_h) { const T *const in_ptr_row = in_ptr_d + index_in_h * input_stride_h; const T *const weights_ptr_row = weights_ptr_d + index_wei_h * kernel_stride_h; for (int index_wei_w = wei_w_start, index_in_w = in_w_start; index_wei_w < wei_w_end; ++index_wei_w, ++index_in_w) { const T *in_ptr_mover = in_ptr_row + index_in_w * input_stride_w; const T *weights_ptr_mover = weights_ptr_row + index_wei_w * kernel_stride_w; int index_c_in = 0; vector_type out_temp_vec = wrapper::vdup_n(static_cast(0), tag_type()); vector_type w_vec = wrapper::vdup_n(static_cast(0), tag_type()); for (; index_c_in <= index_c_in_end - num_elems_read_per_iteration; index_c_in += num_elems_read_per_iteration, in_ptr_mover += num_elems_read_per_iteration) { const auto src_vec = wrapper::vloadq(in_ptr_mover); //Load Cin weights for (int k = 0; k < num_elems_read_per_iteration; ++k, weights_ptr_mover += index_c_out_end) { w_vec = wrapper::vsetlane(*weights_ptr_mover, w_vec, k); } out_temp_vec = wrapper::vmla(out_temp_vec, w_vec, src_vec); } out_temp += vreduce(out_temp_vec); for (; index_c_in < index_c_in_end; ++index_c_in, ++in_ptr_mover, weights_ptr_mover += index_c_out_end) { const auto src_val = *(in_ptr_mover); const auto w_val = *(weights_ptr_mover); out_temp += src_val * w_val; } } } } *(reinterpret_cast(out_ptr + id_w[0])) = (biases_ptr != nullptr) ? out_temp + biases_ptr[id_w[0]] : out_temp; }, wei); }, out); } } // namespace cpu } // namespace arm_compute #endif // SRC_CORE_NEON_KERNELS_CONV3D_LIST_H