/* * Copyright (c) 2021-2022 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/cpu/kernels/add/generic/sve/impl.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/utils/misc/Traits.h" #include "src/core/NEON/SVEMath.h" #include "src/core/NEON/wrapper/intrinsics/intrinsics.h" #include namespace arm_compute { namespace cpu { template void add_same_sve( const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window) { const auto all_true_pg = wrapper::svptrue(); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = src0->info()->tensor_shape().x() != src1->info()->tensor_shape().x(); const bool is_sat = (policy == ConvertPolicy::SATURATE); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(src0->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape()); Iterator input1(src0, window.broadcast_if_dimension_le_one(src0->info()->tensor_shape())); Iterator input2(src1, window.broadcast_if_dimension_le_one(src1->info()->tensor_shape())); Iterator output(dst, window); if (is_broadcast_across_x) { const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? src1 : src0; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? src1 : src0; // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(dst, win); execute_window_loop( win, [&](const Coordinates &) { const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); const ScalarType broadcast_value = *reinterpret_cast(broadcast_input.ptr()); const auto broadcast_value_vec = wrapper::svdup_n(broadcast_value); int x = window_start_x; svbool_t pg = wrapper::svwhilelt(x, window_end_x); do { const auto non_broadcast_v = svld1(pg, non_broadcast_input_ptr + x); auto res = is_sat ? wrapper::svqadd(broadcast_value_vec, non_broadcast_v) : svadd_z(pg, broadcast_value_vec, non_broadcast_v); svst1(pg, output_ptr + x, res); x += wrapper::svcnt(); pg = wrapper::svwhilelt(x, window_end_x); } while (svptest_any(all_true_pg, pg)); }, broadcast_input, non_broadcast_input, output); } else { // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(src0, input1_win); Iterator input2(src1, input2_win); Iterator output(dst, win); execute_window_loop( win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); int x = window_start_x; svbool_t pg = wrapper::svwhilelt(x, window_end_x); do { const auto val1 = svld1(pg, input1_ptr + x); const auto val2 = svld1(pg, input2_ptr + x); const auto res = is_sat ? wrapper::svqadd(val1, val2) : svadd_z(pg, val1, val2); svst1(pg, output_ptr + x, res); x += wrapper::svcnt(); pg = wrapper::svwhilelt(x, window_end_x); } while (svptest_any(all_true_pg, pg)); }, input1, input2, output); } } template void add_same_sve( const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window); template void add_same_sve( const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window); template void add_same_sve( const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window); template void add_same_sve( const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window); #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS) template void add_same_sve( const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window); #endif /* (__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS) */ } // namespace cpu } // namespace arm_compute