/* * Copyright (c) 2020-2022 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/utils/misc/Traits.h" #include "src/core/NEON/wrapper/intrinsics/intrinsics.h" #include "src/core/helpers/WindowHelpers.h" #include "src/cpu/kernels/add/generic/neon/impl.h" namespace arm_compute { namespace cpu { void add_qasymm8_signed_neon(const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window) { ARM_COMPUTE_UNUSED(policy); // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(src0->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); constexpr int window_step_x = 16; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = src0->info()->tensor_shape().x() != src1->info()->tensor_shape().x(); const UniformQuantizationInfo iq1_info = src0->info()->quantization_info().uniform(); const UniformQuantizationInfo iq2_info = src1->info()->quantization_info().uniform(); const UniformQuantizationInfo oq_info = dst->info()->quantization_info().uniform(); const auto scale1 = iq1_info.scale / oq_info.scale; const auto scale2 = iq2_info.scale / oq_info.scale; const auto offset = float(oq_info.offset) - scale1 * float(iq1_info.offset) - scale2 * float(iq2_info.offset); if(is_broadcast_across_x) { const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? src1 : src0; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? src1 : src0; const auto af_scale = is_broadcast_input_2 ? scale1 : scale2; const auto bf_scale = is_broadcast_input_2 ? scale2 : scale1; const auto vscale1 = vdupq_n_f32(af_scale); // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(dst, win); execute_window_loop(win, [&](const Coordinates &) { const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); const auto broadcast_value = *reinterpret_cast(broadcast_input.ptr()); const auto bf = vdupq_n_f32(float(broadcast_value) * scale2 + offset); const auto bfs = float(broadcast_value) * bf_scale + offset; // Compute S elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const int8x16_t a = vld1q_s8(non_broadcast_input_ptr + x); const auto a_s16_0 = vmovl_s8(vget_low_s8(a)); const auto a_s16_1 = vmovl_s8(vget_high_s8(a)); const auto af_0 = vmlaq_f32(bf, vcvtq_f32_s32(vmovl_s16(vget_low_s16(a_s16_0))), vscale1); const auto af_1 = vmlaq_f32(bf, vcvtq_f32_s32(vmovl_s16(vget_high_s16(a_s16_0))), vscale1); const auto af_2 = vmlaq_f32(bf, vcvtq_f32_s32(vmovl_s16(vget_low_s16(a_s16_1))), vscale1); const auto af_3 = vmlaq_f32(bf, vcvtq_f32_s32(vmovl_s16(vget_high_s16(a_s16_1))), vscale1); int32x4_t rf_0{}; int32x4_t rf_1{}; int32x4_t rf_2{}; int32x4_t rf_3{}; #ifdef __aarch64__ rf_0 = vcvtnq_s32_f32(af_0); rf_1 = vcvtnq_s32_f32(af_1); rf_2 = vcvtnq_s32_f32(af_2); rf_3 = vcvtnq_s32_f32(af_3); #else //__aarch64__ rf_0 = vcvtq_s32_f32(af_0); rf_1 = vcvtq_s32_f32(af_1); rf_2 = vcvtq_s32_f32(af_2); rf_3 = vcvtq_s32_f32(af_3); #endif //__aarch64__ const int8x8_t pa = vqmovn_s16(vcombine_s16(vqmovn_s32(rf_0), vqmovn_s32(rf_1))); const int8x8_t pb = vqmovn_s16(vcombine_s16(vqmovn_s32(rf_2), vqmovn_s32(rf_3))); vst1q_s8(output_ptr + x, vcombine_s8(pa, pb)); } // Compute left-over elements for(; x < window_end_x; ++x) { const auto result = float(non_broadcast_input_ptr[x]) * af_scale + bfs; #ifdef __aarch64__ output_ptr[x] = utility::clamp(support::cpp11::lround(result)); #else // __aarch64__ output_ptr[x] = utility::clamp(support::cpp11::trunc(result)); #endif // __aarch64__ } }, broadcast_input, non_broadcast_input, output); } else { // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(src0, input1_win); Iterator input2(src1, input2_win); Iterator output(dst, win); const auto vscale1 = vdupq_n_f32(scale1); const auto vscale2 = vdupq_n_f32(scale2); const auto voffset = vdupq_n_f32(offset); execute_window_loop(win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); // Compute S elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const int8x16_t a = vld1q_s8(input1_ptr + x); const int8x16_t b = vld1q_s8(input2_ptr + x); const auto a_s16_0 = vmovl_s8(vget_low_s8(a)); const auto a_s16_1 = vmovl_s8(vget_high_s8(a)); const auto b_s16_0 = vmovl_s8(vget_low_s8(b)); const auto b_s16_1 = vmovl_s8(vget_high_s8(b)); const auto af_0 = vmlaq_f32(voffset, vcvtq_f32_s32(vmovl_s16(vget_low_s16(a_s16_0))), vscale1); const auto af_1 = vmlaq_f32(voffset, vcvtq_f32_s32(vmovl_s16(vget_high_s16(a_s16_0))), vscale1); const auto af_2 = vmlaq_f32(voffset, vcvtq_f32_s32(vmovl_s16(vget_low_s16(a_s16_1))), vscale1); const auto af_3 = vmlaq_f32(voffset, vcvtq_f32_s32(vmovl_s16(vget_high_s16(a_s16_1))), vscale1); const auto bf_0 = vmlaq_f32(af_0, vcvtq_f32_s32(vmovl_s16(vget_low_s16(b_s16_0))), vscale2); const auto bf_1 = vmlaq_f32(af_1, vcvtq_f32_s32(vmovl_s16(vget_high_s16(b_s16_0))), vscale2); const auto bf_2 = vmlaq_f32(af_2, vcvtq_f32_s32(vmovl_s16(vget_low_s16(b_s16_1))), vscale2); const auto bf_3 = vmlaq_f32(af_3, vcvtq_f32_s32(vmovl_s16(vget_high_s16(b_s16_1))), vscale2); int32x4_t rf_0{}; int32x4_t rf_1{}; int32x4_t rf_2{}; int32x4_t rf_3{}; #ifdef __aarch64__ rf_0 = vcvtnq_s32_f32(bf_0); rf_1 = vcvtnq_s32_f32(bf_1); rf_2 = vcvtnq_s32_f32(bf_2); rf_3 = vcvtnq_s32_f32(bf_3); #else //__aarch64__ rf_0 = vcvtq_s32_f32(bf_0); rf_1 = vcvtq_s32_f32(bf_1); rf_2 = vcvtq_s32_f32(bf_2); rf_3 = vcvtq_s32_f32(bf_3); #endif //__aarch64__ const int8x8_t pa = vqmovn_s16(vcombine_s16(vqmovn_s32(rf_0), vqmovn_s32(rf_1))); const int8x8_t pb = vqmovn_s16(vcombine_s16(vqmovn_s32(rf_2), vqmovn_s32(rf_3))); vst1q_s8(output_ptr + x, vcombine_s8(pa, pb)); } // Compute left-over elements for(; x < window_end_x; ++x) { const auto result = float(input1_ptr[x]) * scale1 + float(input2_ptr[x]) * scale2 + offset; #ifdef __aarch64__ output_ptr[x] = utility::clamp(support::cpp11::lround(result)); #else // __aarch64__ output_ptr[x] = utility::clamp(support::cpp11::trunc(result)); #endif // __aarch64__ } }, input1, input2, output); } } } // namespace cpu } // namespace arm_compute