/* * Copyright (c) 2016-2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/cpu/kernels/CpuScaleKernel.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/utils/InterpolationPolicyUtils.h" #include "arm_compute/core/Window.h" #include "src/core/common/Registrars.h" #include "src/core/helpers/ScaleHelpers.h" #include "src/core/helpers/WindowHelpers.h" #include "src/cpu/kernels/scale/neon/list.h" #include "src/cpu/kernels/scale/sve/list.h" #include "support/Rounding.h" #include #include namespace arm_compute { namespace cpu { #ifdef ENABLE_NCHW_KERNELS void scale_area_nchw_u8(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy, InterpolationPolicy policy, BorderMode border_mode, PixelValue constant_border_value, float sampling_offset, bool align_corners, const Window &window) { ARM_COMPUTE_UNUSED(dx, dy, offsets, policy, border_mode, constant_border_value, sampling_offset, align_corners); using namespace scale_helpers; ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::U8); // Don't increment in width/height/channels for the input tensor // A pointer to the start of this plane is needed as base for the precomputed offsets Window win_in(window); win_in.set(Window::DimX, Window::Dimension(0, 0, 0)); win_in.set(Window::DimY, Window::Dimension(0, 0, 0)); win_in.set(Window::DimZ, Window::Dimension(0, 0, 0)); Iterator src_i(src, win_in); Iterator dst_i(dst, window); const auto wr = scale_utils::calculate_resize_ratio(src->info()->dimension(0), dst->info()->dimension(0), align_corners); const auto hr = scale_utils::calculate_resize_ratio(src->info()->dimension(1), dst->info()->dimension(1), align_corners); const auto w = src->info()->dimension(0); const auto h = src->info()->dimension(1); const size_t in_stride = src->info()->strides_in_bytes()[1]; execute_window_loop( window, [&](const Coordinates &id) { const auto in_ptr = reinterpret_cast(src_i.ptr()); uint8x8_t tmp0 = vdup_n_u8(0); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x(), id.y()), tmp0, 0); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 1, id.y()), tmp0, 1); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 2, id.y()), tmp0, 2); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 3, id.y()), tmp0, 3); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 4, id.y()), tmp0, 4); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 5, id.y()), tmp0, 5); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 6, id.y()), tmp0, 6); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 7, id.y()), tmp0, 7); uint8x8_t tmp1 = vdup_n_u8(0); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 8, id.y()), tmp1, 0); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 9, id.y()), tmp1, 1); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 10, id.y()), tmp1, 2); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 11, id.y()), tmp1, 3); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 12, id.y()), tmp1, 4); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 13, id.y()), tmp1, 5); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 14, id.y()), tmp1, 6); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 15, id.y()), tmp1, 7); vst1q_u8(dst_i.ptr(), vcombine_u8(tmp0, tmp1)); }, src_i, dst_i); } template void scale_bilinear_qasymm_nchw(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy, InterpolationPolicy policy, BorderMode border_mode, PixelValue constant_border_value, float sampling_offset, bool align_corners, const Window &window) { ARM_COMPUTE_UNUSED(policy); // Get data layout and width/height indices const int idx_width = get_data_layout_dimension_index(DataLayout::NCHW, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(DataLayout::NCHW, DataLayoutDimension::HEIGHT); // Compute the ratio between source height and destination height const auto hr = scale_utils::calculate_resize_ratio(src->info()->dimension(idx_height), dst->info()->dimension(idx_height), align_corners); Window win_off; win_off.set(Window::DimX, Window::Dimension(0, 0, 0)); win_off.set(Window::DimY, Window::Dimension(0, 0, 0)); // Don't increment in X and Y direction for the input tensor // A pointer to the start of this plane is needed as base for the precomputed offsets Window win_in(window); win_in.set(idx_width, Window::Dimension(0, 0, 0)); win_in.set(idx_height, Window::Dimension(0, 0, 0)); for (size_t d = Window::DimZ; d < offsets->info()->num_dimensions(); ++d) { win_off.set(d, Window::Dimension(0, 0, 0)); } Iterator src_i(src, win_in); Iterator dst_i(dst, window); const int32_t in_dim_w = src->info()->dimension(idx_width); const int32_t in_dim_h = src->info()->dimension(idx_height); const int32_t stride_w = src->info()->strides_in_bytes()[idx_width]; const int32_t stride_h = src->info()->strides_in_bytes()[idx_height]; const UniformQuantizationInfo iq_info = src->info()->quantization_info().uniform(); const UniformQuantizationInfo oq_info = dst->info()->quantization_info().uniform(); if (border_mode == BorderMode::CONSTANT) { #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC using ConstType = typename std::conditional::value, half, T>::type; #else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ using ConstType = T; #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ const T const_border_value = static_cast(constant_border_value.get()); execute_window_loop( window, [&](const Coordinates &id) { const int32_t index_h = std::floor((id[idx_height] + sampling_offset) * hr - sampling_offset); const int32_t index_w = *(reinterpret_cast( offsets->ptr_to_element(Coordinates(id[idx_width], id[idx_height])))); const auto dx_val = *(reinterpret_cast(dx->ptr_to_element(Coordinates(id[idx_width], id[idx_height])))); const auto dy_val = *(reinterpret_cast(dy->ptr_to_element(Coordinates(id[idx_width], id[idx_height])))); const auto pixel_row_ptr = reinterpret_cast(src_i.ptr()); const auto a00 = (0 <= index_w && index_w < in_dim_w && 0 <= index_h && index_h < in_dim_h) ? (*(pixel_row_ptr + index_w * stride_w + index_h * stride_h)) : const_border_value; const auto a01 = (-1 <= index_w && index_w < in_dim_w - 1 && 0 <= index_h && index_h < in_dim_h) ? (*(pixel_row_ptr + (index_w + 1) * stride_w + index_h * stride_h)) : const_border_value; const auto a10 = (0 <= index_w && index_w < in_dim_w && -1 <= index_h && index_h < in_dim_h - 1) ? (*(pixel_row_ptr + index_w * stride_w + (index_h + 1) * stride_h)) : const_border_value; const auto a11 = (-1 <= index_w && index_w < in_dim_w - 1 && -1 <= index_h && index_h < in_dim_h - 1) ? (*(pixel_row_ptr + (index_w + 1) * stride_w + (index_h + 1) * stride_h)) : const_border_value; const float inp00 = Qasymm8QuantizationHelper::dequantize(a00, iq_info); const float inp01 = Qasymm8QuantizationHelper::dequantize(a01, iq_info); const float inp10 = Qasymm8QuantizationHelper::dequantize(a10, iq_info); const float inp11 = Qasymm8QuantizationHelper::dequantize(a11, iq_info); *reinterpret_cast(dst_i.ptr()) = Qasymm8QuantizationHelper::quantize( scale_helpers::delta_bilinear(inp00, inp01, inp10, inp11, dx_val, dy_val), oq_info); }, src_i, dst_i); } else if (border_mode == BorderMode::REPLICATE) { execute_window_loop( window, [&](const Coordinates &id) { const int index_h = std::floor((id[idx_height] + sampling_offset) * hr - sampling_offset); const int32_t index_w = *(reinterpret_cast( offsets->ptr_to_element(Coordinates(id[idx_width], id[idx_height])))); const auto dx_val = *(reinterpret_cast(dx->ptr_to_element(Coordinates(id[idx_width], id[idx_height])))); const auto dy_val = *(reinterpret_cast(dy->ptr_to_element(Coordinates(id[idx_width], id[idx_height])))); const auto pixel_row_ptr = reinterpret_cast(src_i.ptr()); auto clamped_w = utility::clamp(index_w, 0, in_dim_w - 1); auto clamped_w1 = utility::clamp(index_w + 1, 0, in_dim_w - 1); auto clamped_h = utility::clamp(index_h, 0, in_dim_h - 1); auto clamped_h1 = utility::clamp(index_h + 1, 0, in_dim_h - 1); const auto a00 = *(pixel_row_ptr + clamped_w * stride_w + clamped_h * stride_h); const auto a01 = *(pixel_row_ptr + clamped_w1 * stride_w + clamped_h * stride_h); const auto a10 = *(pixel_row_ptr + clamped_w * stride_w + clamped_h1 * stride_h); const auto a11 = *(pixel_row_ptr + clamped_w1 * stride_w + clamped_h1 * stride_h); const float inp00 = Qasymm8QuantizationHelper::dequantize(a00, iq_info); const float inp01 = Qasymm8QuantizationHelper::dequantize(a01, iq_info); const float inp10 = Qasymm8QuantizationHelper::dequantize(a10, iq_info); const float inp11 = Qasymm8QuantizationHelper::dequantize(a11, iq_info); *reinterpret_cast(dst_i.ptr()) = Qasymm8QuantizationHelper::quantize( scale_helpers::delta_bilinear(inp00, inp01, inp10, inp11, dx_val, dy_val), oq_info); }, src_i, dst_i); } else { ARM_COMPUTE_ERROR("Not implemented"); } } /** function to perform scale using bilinear interpolation on the given window */ template void scale_bilinear_nchw(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy, InterpolationPolicy policy, BorderMode border_mode, PixelValue constant_border_value, float sampling_offset, bool align_corners, const Window &window) { ARM_COMPUTE_UNUSED(policy); arm_compute::cpu::scale_bilinear_nchw(src, dst, dx, dy, offsets, border_mode, constant_border_value, sampling_offset, align_corners, window); } template void scale_nearest_nchw(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy, InterpolationPolicy policy, BorderMode border_mode, PixelValue constant_border_value, float sampling_offset, bool align_corners, const Window &window) { ARM_COMPUTE_UNUSED(policy, border_mode); arm_compute::cpu::scale_nearest_nchw(src, dst, dx, dy, offsets, constant_border_value, sampling_offset, align_corners, window); } #endif // ENABLE_NCHW_KERNELS namespace kernels { namespace { static const std::vector available_kernels = { {"sve_fp16_scale", [](const ScaleKernelDataTypeISASelectorData &data) { return data.dt == DataType::F16 && data.isa.sve && data.isa.fp16 && data.interpolation_policy != InterpolationPolicy::BILINEAR; }, REGISTER_FP16_SVE(arm_compute::cpu::fp16_sve_scale)}, {"sve_fp32_scale", [](const ScaleKernelDataTypeISASelectorData &data) { return data.dt == DataType::F32 && data.isa.sve && data.interpolation_policy != InterpolationPolicy::BILINEAR; }, REGISTER_FP32_SVE(arm_compute::cpu::fp32_sve_scale)}, {"sve_qu8_scale", [](const ScaleKernelDataTypeISASelectorData &data) { return data.dt == DataType::QASYMM8 && data.isa.sve && data.interpolation_policy != InterpolationPolicy::BILINEAR; }, REGISTER_QASYMM8_SVE(arm_compute::cpu::qasymm8_sve_scale)}, {"sve_qs8_scale", [](const ScaleKernelDataTypeISASelectorData &data) { return data.dt == DataType::QASYMM8_SIGNED && data.isa.sve && data.interpolation_policy != InterpolationPolicy::BILINEAR; }, REGISTER_QASYMM8_SIGNED_SVE(arm_compute::cpu::qasymm8_signed_sve_scale)}, {"sve_u8_scale", [](const ScaleKernelDataTypeISASelectorData &data) { return data.dt == DataType::U8 && data.isa.sve && data.interpolation_policy != InterpolationPolicy::BILINEAR; }, REGISTER_INTEGER_SVE(arm_compute::cpu::u8_sve_scale)}, {"sve_s16_scale", [](const ScaleKernelDataTypeISASelectorData &data) { return data.dt == DataType::S16 && data.isa.sve && data.interpolation_policy != InterpolationPolicy::BILINEAR; }, REGISTER_INTEGER_SVE(arm_compute::cpu::s16_sve_scale)}, {"neon_fp16_scale", [](const ScaleKernelDataTypeISASelectorData &data) { return data.dt == DataType::F16 && data.isa.fp16; }, REGISTER_FP16_NEON(arm_compute::cpu::fp16_common_neon_scale)}, {"neon_fp32_scale", [](const ScaleKernelDataTypeISASelectorData &data) { return data.dt == DataType::F32; }, REGISTER_FP32_NEON(arm_compute::cpu::common_neon_scale)}, {"neon_qu8_scale", [](const ScaleKernelDataTypeISASelectorData &data) { return data.dt == DataType::QASYMM8; }, REGISTER_QASYMM8_NEON(arm_compute::cpu::qasymm8_neon_scale)}, {"neon_qs8_scale", [](const ScaleKernelDataTypeISASelectorData &data) { return data.dt == DataType::QASYMM8_SIGNED; }, REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::qasymm8_signed_neon_scale)}, {"neon_u8_scale", [](const ScaleKernelDataTypeISASelectorData &data) { return data.dt == DataType::U8; }, REGISTER_INTEGER_NEON(arm_compute::cpu::u8_neon_scale)}, {"neon_s8_scale", [](const ScaleKernelDataTypeISASelectorData &data) { return data.dt == DataType::S8; }, REGISTER_INTEGER_NEON(arm_compute::cpu::s8_neon_scale)}, {"neon_s16_scale", [](const ScaleKernelDataTypeISASelectorData &data) { return data.dt == DataType::S16; }, REGISTER_INTEGER_NEON(arm_compute::cpu::s16_neon_scale)}, }; Status validate_arguments(const ITensorInfo *src, const ITensorInfo *dx, const ITensorInfo *dy, const ITensorInfo *offsets, ITensorInfo *dst, const ScaleKernelInfo &info) { const auto *uk = CpuScaleKernel::get_implementation( ScaleKernelDataTypeISASelectorData{src->data_type(), CPUInfo::get().get_isa(), info.interpolation_policy}); ARM_COMPUTE_RETURN_ERROR_ON(uk == nullptr || uk->ukernel == nullptr); ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(dst); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst); ARM_COMPUTE_RETURN_ERROR_ON(dst == src); ARM_COMPUTE_RETURN_ERROR_ON(src->num_channels() != 1); ARM_COMPUTE_RETURN_ERROR_ON(info.sampling_policy != SamplingPolicy::CENTER && info.sampling_policy != SamplingPolicy::TOP_LEFT); ARM_COMPUTE_UNUSED(info.constant_border_value); ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.use_padding, "Padding is not supported"); const DataLayout data_layout = info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : info.data_layout; const auto width_index = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const auto height_index = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const auto output_width = dst->dimension(width_index); const auto output_height = dst->dimension(height_index); ARM_COMPUTE_RETURN_ERROR_ON(output_width == 0); ARM_COMPUTE_RETURN_ERROR_ON(output_height == 0); ARM_COMPUTE_RETURN_ERROR_ON((src->data_type() == DataType::S8) && (data_layout != DataLayout::NHWC || info.interpolation_policy != InterpolationPolicy::BILINEAR || info.border_mode != BorderMode::REPLICATE)); if (info.interpolation_policy == InterpolationPolicy::NEAREST_NEIGHBOR && offsets != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(offsets, 1, DataType::S32); } if (info.interpolation_policy == InterpolationPolicy::BILINEAR && offsets != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(offsets, 1, DataType::S32); if (dx != nullptr && dy != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dx, 1, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dy, 1, DataType::F32); } } ARM_COMPUTE_RETURN_ERROR_ON(info.align_corners && !scale_utils::is_align_corners_allowed_sampling_policy(info.sampling_policy)); if (info.interpolation_policy == InterpolationPolicy::AREA) { ARM_COMPUTE_RETURN_ERROR_ON(data_layout != DataLayout::NCHW); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::U8); } return Status{}; } } // namespace void CpuScaleKernel::configure(const ITensorInfo *src, const ITensorInfo *dx, const ITensorInfo *dy, const ITensorInfo *offsets, ITensorInfo *dst, const ScaleKernelInfo &info) { ARM_COMPUTE_UNUSED(dx, dy, offsets); ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst); // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, dx, dy, offsets, dst, info)); const auto *uk = CpuScaleKernel::get_implementation( ScaleKernelDataTypeISASelectorData{src->data_type(), CPUInfo::get().get_isa(), info.interpolation_policy}); ARM_COMPUTE_ERROR_ON_NULLPTR(uk); _run_method = uk->ukernel; _name = std::string("CpuScaleKernel") .append("/") .append(uk->name) .append("_") .append(string_from_interpolation_policy(info.interpolation_policy)); // Get data layout and width/height indices _data_layout = info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : info.data_layout; const int idx_width = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT); _policy = info.interpolation_policy; _border_mode = info.border_mode; _constant_border_value = info.constant_border_value; _align_corners = info.align_corners; if (info.sampling_policy == SamplingPolicy::CENTER) { _sampling_offset = 0.5f; } // Compute the ratio between source width/height and destination width/height const auto wr = scale_utils::calculate_resize_ratio(src->dimension(idx_width), dst->dimension(idx_width), _align_corners); const auto hr = scale_utils::calculate_resize_ratio(src->dimension(idx_height), dst->dimension(idx_height), _align_corners); // Area interpolation behaves as Nearest Neighbour in case of up-sampling _policy = (_policy == InterpolationPolicy::AREA && wr <= 1.f && hr <= 1.f) ? InterpolationPolicy::NEAREST_NEIGHBOR : _policy; if (_border_mode == BorderMode::UNDEFINED) { _border_mode = BorderMode::CONSTANT; _constant_border_value = PixelValue(); } #ifdef ENABLE_NCHW_KERNELS // Configure scale function to run if (_data_layout == DataLayout::NCHW) { std::string function_to_call("scale_"); function_to_call += string_from_data_type(src->data_type()) + "_"; function_to_call += string_from_data_layout(_data_layout) + "_"; function_to_call += string_from_interpolation_policy(_policy); const static std::map map_nchw_function = { {"scale_U8_NCHW_AREA_CONSTANT", &arm_compute::cpu::scale_area_nchw_u8}, {"scale_U8_NCHW_AREA_CONSTANT", &arm_compute::cpu::scale_area_nchw_u8}, {"scale_U8_NCHW_BILINEAR", &arm_compute::cpu::scale_bilinear_nchw}, {"scale_U8_NCHW_NEAREST_NEIGHBOUR", &arm_compute::cpu::scale_nearest_nchw}, {"scale_QASYMM8_NCHW_BILINEAR", &arm_compute::cpu::scale_bilinear_qasymm_nchw}, {"scale_QASYMM8_NCHW_NEAREST_NEIGHBOUR", &arm_compute::cpu::scale_nearest_nchw}, {"scale_QASYMM8_SIGNED_NCHW_BILINEAR", &arm_compute::cpu::scale_bilinear_qasymm_nchw}, {"scale_QASYMM8_SIGNED_NCHW_NEAREST_NEIGHBOUR", &arm_compute::cpu::scale_nearest_nchw}, {"scale_S16_NCHW_BILINEAR", &arm_compute::cpu::scale_bilinear_nchw}, {"scale_S16_NCHW_NEAREST_NEIGHBOUR", &arm_compute::cpu::scale_nearest_nchw}, {"scale_F16_NCHW_BILINEAR", REGISTER_FP16_NEON(arm_compute::cpu::fp16_bilinear_neon_scale_nchw)}, {"scale_F16_NCHW_NEAREST_NEIGHBOUR", REGISTER_FP16_NEON(arm_compute::cpu::fp16_nearest_neon_scale_nchw)}, {"scale_F32_NCHW_BILINEAR", &arm_compute::cpu::scale_bilinear_nchw}, {"scale_F32_NCHW_NEAREST_NEIGHBOUR", &arm_compute::cpu::scale_nearest_nchw}, }; auto it = map_nchw_function.find(function_to_call); if (it != map_nchw_function.end()) { _nchw_func = it->second; } } #endif // ENABLE_NCHW_KERNELS // Configure window Window win = calculate_max_window(*dst, Steps()); ICpuKernel::configure(win); } Status CpuScaleKernel::validate(const ITensorInfo *input, const ITensorInfo *dx, const ITensorInfo *dy, const ITensorInfo *offsets, ITensorInfo *output, const ScaleKernelInfo &info) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, dx, dy, offsets, output, info)); return Status{}; } void CpuScaleKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window); ARM_COMPUTE_ERROR_ON(_nchw_func == nullptr && _data_layout == DataLayout::NCHW); ARM_COMPUTE_ERROR_ON(_run_method == nullptr && _data_layout == DataLayout::NHWC); const auto src = tensors.get_const_tensor(TensorType::ACL_SRC); auto dst = tensors.get_tensor(TensorType::ACL_DST); const auto dx = tensors.get_const_tensor(TensorType::ACL_INT_0); const auto dy = tensors.get_const_tensor(TensorType::ACL_INT_1); const auto offsets = tensors.get_const_tensor(TensorType::ACL_INT_2); if (_data_layout == DataLayout::NCHW) { _nchw_func(src, dst, offsets, dx, dy, _policy, _border_mode, _constant_border_value, _sampling_offset, _align_corners, window); } else { _run_method(src, dst, offsets, dx, dy, _policy, _border_mode, _constant_border_value, _sampling_offset, _align_corners, window); } } const char *CpuScaleKernel::name() const { return _name.c_str(); } const std::vector &CpuScaleKernel::get_available_kernels() { return available_kernels; } } // namespace kernels } // namespace cpu } // namespace arm_compute