/* * Copyright (c) 2017-2022, 2024 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/cpu/kernels/CpuQuantizeKernel.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "src/core/CPP/Validate.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include "src/core/NEON/NEAsymm.h" #include "src/core/NEON/NEMath.h" #include "src/core/NEON/wrapper/wrapper.h" #include #include namespace arm_compute { namespace cpu { namespace kernels { namespace { constexpr auto window_step = 16; Status validate_arguments(const ITensorInfo *src, const ITensorInfo *dst) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON(dst->tensor_shape().total_size() == 0); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::QSYMM8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QASYMM16); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(src, dst); return Status{}; } template inline float32x4x4_t load_value(const T *input_ptr) { using Tx16_t = typename wrapper::traits::neon_vector::type; return arm_compute::convert_to_float32x4x4(wrapper::vloadq(input_ptr)); } template <> inline float32x4x4_t load_value(const float *input_ptr) { return {wrapper::vloadq(input_ptr), wrapper::vloadq(input_ptr + 4), wrapper::vloadq(input_ptr + 8), wrapper::vloadq(input_ptr + 12)}; } #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC template <> inline float32x4x4_t load_value(const float16_t *input_ptr) { return {vcvt_f32_f16(wrapper::vload(input_ptr)), vcvt_f32_f16(wrapper::vload(input_ptr + 4)), vcvt_f32_f16(wrapper::vload(input_ptr + 8)), vcvt_f32_f16(wrapper::vload(input_ptr + 12))}; } #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC template using vector_type = wrapper::traits::neon_vector_t; template vector_type vquantize_qasymm8(const float32x4x4_t &qv, const UniformQuantizationInfo &qi); template <> vector_type vquantize_qasymm8(const float32x4x4_t &qv, const UniformQuantizationInfo &qi) { return vquantize(qv, qi); } template <> vector_type vquantize_qasymm8(const float32x4x4_t &qv, const UniformQuantizationInfo &qi) { return vquantize_signed(qv, qi); } template ::value, bool>::type> inline int8x16_t recombine_8_16(int16x8_t lower, int16x8_t upper) { return wrapper::vcombine(wrapper::vqmovn(lower), wrapper::vqmovn(upper)); } template ::value, bool>::type> inline uint8x16_t recombine_8_16(int16x8_t lower, int16x8_t upper) { return wrapper::vcombine(wrapper::vqmovun(lower), wrapper::vqmovun(upper)); } } // namespace void CpuQuantizeKernel::configure(const ITensorInfo *src, ITensorInfo *dst) { ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, dst)); static const std::map quant_map = { {"op_QASYMM8_QASYMM8", &CpuQuantizeKernel::run_quantize_qasymm8}, {"op_QASYMM8_QASYMM8_SIGNED", &CpuQuantizeKernel::run_quantize_qasymm8}, {"op_QASYMM8_QASYMM16", &CpuQuantizeKernel::run_quantize_qasymm16}, {"op_QASYMM8_SIGNED_QASYMM8", &CpuQuantizeKernel::run_quantize_qasymm8}, {"op_QASYMM8_SIGNED_QASYMM8_SIGNED", &CpuQuantizeKernel::run_quantize_qasymm8}, {"op_QASYMM8_SIGNED_QASYMM16", &CpuQuantizeKernel::run_quantize_qasymm16}, // Functions for offset only requantization {"op_OFFSET_ONLY_QASYMM8_QASYMM8", &CpuQuantizeKernel::run_requantize_offset_only}, {"op_OFFSET_ONLY_QASYMM8_QASYMM8_SIGNED", &CpuQuantizeKernel::run_requantize_offset_only}, {"op_OFFSET_ONLY_QASYMM8_SIGNED_QASYMM8", &CpuQuantizeKernel::run_requantize_offset_only}, {"op_OFFSET_ONLY_QASYMM8_SIGNED_QASYMM8_SIGNED", &CpuQuantizeKernel::run_requantize_offset_only}, // Functions for offset uint8 to int8 and vice versa quantization (no scale changes) {"op_OFFSET_ONLY_CONVERT_QASYMM8_SIGNED_QASYMM8", &CpuQuantizeKernel::run_requantize_offset_only_convert}, {"op_OFFSET_ONLY_CONVERT_QASYMM8_QASYMM8_SIGNED", &CpuQuantizeKernel::run_requantize_offset_only_convert}, {"op_F32_QSYMM8", &CpuQuantizeKernel::run_quantize_qsymm8}, {"op_F32_QASYMM8", &CpuQuantizeKernel::run_quantize_qasymm8}, {"op_F32_QASYMM8_SIGNED", &CpuQuantizeKernel::run_quantize_qasymm8}, {"op_F32_QASYMM16", &CpuQuantizeKernel::run_quantize_qasymm16}, #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC {"op_F16_QASYMM8", &CpuQuantizeKernel::run_quantize_qasymm8}, {"op_F16_QASYMM8_SIGNED", &CpuQuantizeKernel::run_quantize_qasymm8}, {"op_F16_QASYMM16", &CpuQuantizeKernel::run_quantize_qasymm16}, #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC*/ }; std::string function_to_call("op_"); // For offset only functions - must be 8-bit and have identical scale values. if (src->quantization_info().scale() == dst->quantization_info().scale() && (is_data_type_quantized_asymmetric_char(src->data_type()) && is_data_type_quantized_asymmetric_char(dst->data_type()))) { function_to_call += "OFFSET_ONLY_"; // For optimized datatype conversion 8-bit re-quantization offset only functions. // These must have an offset of exactly 128 to match requirements - has specific circumstances to match use case. auto uqinfo = compute_requantization_scale_offset(src->quantization_info().uniform(), dst->quantization_info().uniform()); const auto src_dt = src->data_type(); if (src->data_type() != dst->data_type() && ((src_dt == DataType::QASYMM8_SIGNED && uqinfo.offset == 128) || (src_dt == DataType::QASYMM8 && uqinfo.offset == -128))) { function_to_call += "CONVERT_"; } } // Specify datatype for function function_to_call += string_from_data_type(src->data_type()) + "_"; function_to_call += string_from_data_type(dst->data_type()); auto it = quant_map.find(function_to_call); if (it == quant_map.end()) { ARM_COMPUTE_ERROR("Unsupported combination of input and output data types"); } _func = it->second; // Calculate window. Squash if possible. Window win; std::tie(win, _split_dimension) = calculate_squashed_or_max_window(*src); ICpuKernel::configure(win); } Status CpuQuantizeKernel::validate(const ITensorInfo *src, const ITensorInfo *dst) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, dst)); return Status{}; } template void CpuQuantizeKernel::run_quantize_qsymm8(const ITensor *src, ITensor *dst, const Window &window) { const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const UniformQuantizationInfo uqinfo_in = src->info()->quantization_info().uniform(); UniformQuantizationInfo uqinfo = dst->info()->quantization_info().uniform(); uqinfo = compute_requantization_scale_offset(uqinfo_in, uqinfo); // Collapse window and reset first dimension to handle tail calculations manually Window win_collapsed = window.collapse_if_possible(window, Window::DimZ); win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input(src, win_collapsed); Iterator output(dst, win_collapsed); execute_window_loop( win_collapsed, [&](const Coordinates &) { auto input_ptr = reinterpret_cast(input.ptr()); auto output_ptr = reinterpret_cast(output.ptr()); int x = window_start_x; for (; x <= (window_end_x - window_step); x += window_step) { wrapper::vstore(&output_ptr[x], vquantize_qasymm8(load_value(&input_ptr[x]), uqinfo)); } // Compute left-over elements for (; x < window_end_x; ++x) { output_ptr[x] = quantize_qsymm8(input_ptr[x], dst->info()->quantization_info()); } }, input, output); } template void CpuQuantizeKernel::run_requantize_offset_only_convert(const ITensor *src, ITensor *dst, const Window &window) { const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); // Calculate output offset difference. const UniformQuantizationInfo uqinfo_in = src->info()->quantization_info().uniform(); UniformQuantizationInfo uqinfo = dst->info()->quantization_info().uniform(); uqinfo = compute_requantization_scale_offset(uqinfo_in, uqinfo); // Collapse window and reset first dimension to handle tail calculations manually Window win_collapsed = window.collapse_if_possible(window, Window::DimZ); win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1)); // Duplicate offset in signed vector format const int8x16_t offset = wrapper::vdup_n(static_cast(uqinfo.offset), wrapper::traits::vector_128_tag{}); Iterator input(src, win_collapsed); Iterator output(dst, win_collapsed); execute_window_loop( win_collapsed, [&](const Coordinates &) { auto input_ptr = reinterpret_cast(input.ptr()); auto output_ptr = reinterpret_cast(output.ptr()); int x = window_start_x; for (; x <= (window_end_x - window_step); x += window_step) { const wrapper::traits::neon_vector_t qv = wrapper::vloadq(input_ptr + x); // load 128 bit vector of 8 bit datatype // Signed addition. auto res = vaddq_s8(reinterpret_cast(qv), offset); // Output is dependent on datatype. wrapper::vstore(&output_ptr[x], reinterpret_cast>(res)); } // Compute left-over elements for (; x < window_end_x; ++x) { auto result = uqinfo.offset + static_cast(input_ptr[x]); output_ptr[x] = static_cast(result); } }, input, output); } template void CpuQuantizeKernel::run_requantize_offset_only(const ITensor *src, ITensor *dst, const Window &window) { const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const UniformQuantizationInfo uqinfo_in = src->info()->quantization_info().uniform(); UniformQuantizationInfo uqinfo = dst->info()->quantization_info().uniform(); uqinfo = compute_requantization_scale_offset(uqinfo_in, uqinfo); // Collapse window and reset first dimension to handle tail calculations manually Window win_collapsed = window.collapse_if_possible(window, Window::DimZ); win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1)); // Duplicate offset in signed vector format const int16x8_t offset = wrapper::vdup_n(static_cast(uqinfo.offset), wrapper::traits::vector_128_tag{}); const int32_t low_bound = (dst->info()->data_type() == DataType::QASYMM8) ? 0 : -128; const int32_t upper_bound = (dst->info()->data_type() == DataType::QASYMM8) ? 255 : 127; Iterator input(src, win_collapsed); Iterator output(dst, win_collapsed); execute_window_loop( win_collapsed, [&](const Coordinates &) { auto input_ptr = reinterpret_cast(input.ptr()); TOut *output_ptr = reinterpret_cast(output.ptr()); int x = window_start_x; for (; x <= (window_end_x - window_step); x += window_step) { const auto qv = wrapper::vloadq(input_ptr + x); // load 128 bit vector of 8 bit datatype int16x8_t lower = reinterpret_cast(wrapper::vmovl(wrapper::vgetlow(qv))); int16x8_t upper = reinterpret_cast(wrapper::vmovl(wrapper::vgethigh(qv))); // Signed addition. lower = wrapper::vqadd(lower, offset); upper = wrapper::vqadd(upper, offset); // Output is dependent on datatype. auto res = recombine_8_16(lower, upper); wrapper::vstore(&output_ptr[x], res); } // Compute left-over elements for (; x < window_end_x; ++x) { // Add offset and clamp result to within the range of the output datatype. int32_t result = uqinfo.offset + static_cast(input_ptr[x]); result = utility::clamp(result, low_bound, upper_bound); // Cast result to output datatype. output_ptr[x] = static_cast(result); } }, input, output); } template void CpuQuantizeKernel::run_quantize_qasymm8(const ITensor *src, ITensor *dst, const Window &window) { const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const UniformQuantizationInfo uqinfo_in = src->info()->quantization_info().uniform(); UniformQuantizationInfo uqinfo = dst->info()->quantization_info().uniform(); if (is_data_type_quantized_asymmetric(src->info()->data_type())) { uqinfo = compute_requantization_scale_offset(uqinfo_in, uqinfo); } #ifdef __aarch64__ constexpr RoundingPolicy rounding_policy = RoundingPolicy::TO_NEAREST_EVEN; #else //__aarch64__ constexpr RoundingPolicy rounding_policy = RoundingPolicy::TO_ZERO; #endif //__aarch64__ // Collapse window and reset first dimension to handle tail calculations manually Window win_collapsed = window.collapse_if_possible(window, Window::DimZ); win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input(src, win_collapsed); Iterator output(dst, win_collapsed); execute_window_loop( win_collapsed, [&](const Coordinates &) { auto input_ptr = reinterpret_cast(input.ptr()); auto output_ptr = reinterpret_cast(output.ptr()); int x = window_start_x; for (; x <= (window_end_x - window_step); x += window_step) { wrapper::vstore(&output_ptr[x], vquantize_qasymm8(load_value(&input_ptr[x]), uqinfo)); } // Compute left-over elements for (; x < window_end_x; ++x) { output_ptr[x] = Qasymm8QuantizationHelper::quantize(input_ptr[x], uqinfo, rounding_policy); } }, input, output); } template void CpuQuantizeKernel::run_quantize_qasymm16(const ITensor *src, ITensor *dst, const Window &window) { const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const UniformQuantizationInfo uqinfo_in = src->info()->quantization_info().uniform(); UniformQuantizationInfo uqinfo = dst->info()->quantization_info().uniform(); if (is_data_type_quantized_asymmetric(src->info()->data_type())) { uqinfo = compute_requantization_scale_offset(uqinfo_in, uqinfo); } #ifdef __aarch64__ constexpr RoundingPolicy rounding_policy = RoundingPolicy::TO_NEAREST_EVEN; #else //__aarch64__ constexpr RoundingPolicy rounding_policy = RoundingPolicy::TO_ZERO; #endif //__aarch64__ // Collapse window and reset first dimension to handle tail calculations manually Window win_collapsed = window.collapse_if_possible(window, Window::DimZ); win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input(src, win_collapsed); Iterator output(dst, win_collapsed); execute_window_loop( win_collapsed, [&](const Coordinates &) { auto input_ptr = reinterpret_cast(input.ptr()); auto output_ptr = reinterpret_cast(output.ptr()); int x = window_start_x; for (; x <= (window_end_x - window_step); x += window_step) { uint16x8x2_t tmp = vquantize_qasymm16(load_value(&input_ptr[x]), uqinfo); vst1q_u16(&output_ptr[x], tmp.val[0]); vst1q_u16(&output_ptr[x + 8], tmp.val[1]); } // Compute left-over elements for (; x < window_end_x; ++x) { output_ptr[x] = quantize_qasymm16(input_ptr[x], uqinfo, rounding_policy); } }, input, output); } void CpuQuantizeKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr); const auto src = tensors.get_const_tensor(TensorType::ACL_SRC); auto dst = tensors.get_tensor(TensorType::ACL_DST); (this->*_func)(src, dst, window); } const char *CpuQuantizeKernel::name() const { return "CpuQuantizeKernel"; } } // namespace kernels } // namespace cpu } // namespace arm_compute