/* * Copyright (c) 2017-2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/cpu/kernels/CpuPool2dKernel.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "src/core/common/Registrars.h" #include "src/core/CPP/Validate.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include "src/core/NEON/wrapper/wrapper.h" #include "src/cpu/kernels/pool2d/neon/list.h" #include namespace arm_compute { namespace cpu { namespace kernels { namespace { using namespace misc::shape_calculator; static const std::vector available_kernels = { {"neon_qu8_nhwc_poolMxN", [](const PoolDataTypeISASelectorData &data) { return ((data.dl == DataLayout::NHWC) && (data.dt == DataType::QASYMM8)); }, REGISTER_QASYMM8_NEON(arm_compute::cpu::poolingMxN_qasymm8_neon_nhwc)}, {"neon_qs8_nhwc_poolMxN", [](const PoolDataTypeISASelectorData &data) { return ((data.dl == DataLayout::NHWC) && (data.dt == DataType::QASYMM8_SIGNED)); }, REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::poolingMxN_qasymm8_signed_neon_nhwc)}, {"neon_f16_nhwc_poolMxN", [](const PoolDataTypeISASelectorData &data) { return ((data.dl == DataLayout::NHWC) && (data.dt == DataType::F16)) && data.isa.fp16; }, REGISTER_FP16_NEON(arm_compute::cpu::poolingMxN_fp16_neon_nhwc)}, {"neon_fp32_nhwc_poolMxN", [](const PoolDataTypeISASelectorData &data) { return ((data.dl == DataLayout::NHWC) && (data.dt == DataType::F32)); }, REGISTER_FP32_NEON(arm_compute::cpu::poolingMxN_fp32_neon_nhwc)}, #if defined(ENABLE_NCHW_KERNELS) {"neon_qu8_nchw_pool2", [](const PoolDataTypeISASelectorData &data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::QASYMM8) && (data.pool_size.x() == data.pool_size.y()) && (data.pool_size.x() == 2) && (data.pool_stride_x < 3)); }, REGISTER_QASYMM8_NEON(arm_compute::cpu::pooling2_quantized_neon_nchw)}, {"neon_qu8_nchw_pool3", [](const PoolDataTypeISASelectorData &data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::QASYMM8) && (data.pool_size.x() == data.pool_size.y()) && (data.pool_size.x() == 3) && (data.pool_stride_x < 3)); }, REGISTER_QASYMM8_NEON(arm_compute::cpu::pooling3_quantized_neon_nchw)}, {"neon_qu8_nchw_poolMxN", [](const PoolDataTypeISASelectorData &data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::QASYMM8)); }, REGISTER_QASYMM8_NEON(arm_compute::cpu::poolingMxN_quantized_neon_nchw)}, {"neon_qs8_nchw_pool2", [](const PoolDataTypeISASelectorData &data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::QASYMM8_SIGNED) && (data.pool_size.x() == data.pool_size.y()) && (data.pool_size.x() == 2) && (data.pool_stride_x < 3)); }, REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::pooling2_quantized_neon_nchw)}, {"neon_qs8_nchw_pool3", [](const PoolDataTypeISASelectorData &data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::QASYMM8_SIGNED) && (data.pool_size.x() == data.pool_size.y()) && (data.pool_size.x() == 3) && (data.pool_stride_x < 3)); }, REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::pooling3_quantized_neon_nchw)}, {"neon_qs8_nchw_poolMxN", [](const PoolDataTypeISASelectorData &data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::QASYMM8_SIGNED)); }, REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::poolingMxN_quantized_neon_nchw)}, {"neon_fp16_nchw_pool2", [](const PoolDataTypeISASelectorData &data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::F16 && data.isa.fp16) && (data.pool_size.x() == data.pool_size.y()) && (data.pool_size.x() == 2)); }, REGISTER_FP16_NEON(arm_compute::cpu::pooling2_fp16_neon_nchw)}, {"neon_fp16_nchw_pool3", [](const PoolDataTypeISASelectorData &data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::F16 && data.isa.fp16) && (data.pool_size.x() == data.pool_size.y()) && (data.pool_size.x() == 3)); }, REGISTER_FP16_NEON(arm_compute::cpu::pooling3_fp16_neon_nchw)}, {"neon_fp16_nchw_poolMxN", [](const PoolDataTypeISASelectorData &data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::F16 && data.isa.fp16)); }, REGISTER_FP16_NEON(arm_compute::cpu::poolingMxN_fp16_neon_nchw)}, {"neon_fp32_nchw_pool2", [](const PoolDataTypeISASelectorData &data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::F32) && (data.pool_size.x() == data.pool_size.y()) && (data.pool_size.x() == 2)); }, REGISTER_FP32_NEON(arm_compute::cpu::pooling2_fp32_neon_nchw)}, {"neon_fp32_nchw_pool3", [](const PoolDataTypeISASelectorData &data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::F32) && (data.pool_size.x() == data.pool_size.y()) && (data.pool_size.x() == 3)); }, REGISTER_FP32_NEON(arm_compute::cpu::pooling3_fp32_neon_nchw)}, {"neon_fp32_nchw_pool7", [](const PoolDataTypeISASelectorData &data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::F32) && (data.pool_size.x() == data.pool_size.y()) && (data.pool_size.x() == 7)); }, REGISTER_FP32_NEON(arm_compute::cpu::pooling7_fp32_neon_nchw)}, {"neon_fp32_nchw_poolMxN", [](const PoolDataTypeISASelectorData &data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::F32)); }, REGISTER_FP32_NEON(arm_compute::cpu::poolingMxN_fp32_neon_nchw)}, #endif /* defined(ENABLE_NCHW_KERNELS) */ }; Status validate_arguments(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &pool_info, const ITensorInfo *indices, Size2D pool_size) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst); ARM_COMPUTE_RETURN_ERROR_ON(pool_size.x() == 0); ARM_COMPUTE_RETURN_ERROR_ON(pool_size.y() == 0); int pool_stride_x = 0; int pool_stride_y = 0; int output_width = 0; int output_height = 0; PoolingType pool_type = pool_info.pool_type; const PadStrideInfo pad_stride_info = pool_info.pad_stride_info; const auto data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : pool_info.data_layout; const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); ARM_COMPUTE_RETURN_ERROR_ON_MSG( (!is_data_type_float(src->data_type())) && (is_pool_region_entirely_outside_input(pool_info)), "Pooling region that is entirely outside input tensor is unsupported for non-float types"); std::tie(output_width, output_height) = scaled_dimensions_signed(src->tensor_shape()[idx_width], src->tensor_shape()[idx_height], pool_size.x(), pool_size.y(), pool_info.pad_stride_info); ARM_COMPUTE_RETURN_ERROR_ON_MSG((output_width < 1 || output_height < 1), "Calculated output dimension size is invalid"); TensorInfo out_info(TensorInfo(compute_pool_shape(*src, pool_info), 1, dst->data_type())); std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride(); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src); if (indices) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F32, DataType::F16); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(indices, 1, DataType::U32); ARM_COMPUTE_RETURN_ERROR_ON_MSG(pool_type != PoolingType::MAX, "Pooling indices only supported for MAX pooling method"); } ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON(pool_type == PoolingType::L2 && is_data_type_quantized(src->data_type())); ARM_COMPUTE_RETURN_ERROR_ON_MSG( is_data_type_quantized(src->data_type()) && !pool_info.exclude_padding && (pool_info.pool_type == PoolingType::AVG) && pool_info.pad_stride_info.has_padding() && (src->data_layout() == DataLayout::NHWC), "exclude_padding equal false is not supported for AVG Pooling with padding on quantized types"); if (dst->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(src, dst); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(dst, &out_info); if (indices) { ARM_COMPUTE_RETURN_ERROR_ON_MSG( ((pool_size != Size2D(2, 2)) && !pool_info.use_kernel_indices), "Pooling indices returning source tensor coordinates is only supported for pool size 2x2"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(pool_info.use_kernel_indices && (src->data_layout() != DataLayout::NHWC), "Pooling kernel indices only supported for NHWC"); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(indices, &out_info); } } const auto *uk = CpuPool2dKernel::get_implementation(PoolDataTypeISASelectorData{ src->data_type(), src->data_layout(), pool_stride_x, pool_size, CPUInfo::get().get_isa()}); ARM_COMPUTE_RETURN_ERROR_ON(uk == nullptr || uk->ukernel == nullptr); return Status{}; } std::pair validate_and_configure_window(ITensorInfo *src, ITensorInfo *dst, ITensorInfo *indices, const PoolingLayerInfo &pool_info, unsigned int &num_elems_processed_per_iteration, int pool_size_x, int pool_size_y) { // dst auto inizialitation if not yet initialized auto_init_if_empty(*dst, src->clone()->set_tensor_shape(compute_pool_shape(*src, pool_info))); if (indices) { // Indices auto inizialitation if not yet initialized auto_init_if_empty(*indices, (src->clone()->set_tensor_shape(compute_pool_shape(*src, pool_info))) .set_data_type(DataType::U32) /* we store the offset to the element */); } const auto data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : pool_info.data_layout; int pool_stride_x = 0; int pool_stride_y = 0; const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const PadStrideInfo pad_stride_info = pool_info.pad_stride_info; std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride(); const bool is_square = pool_size_x == pool_size_y; const unsigned int pooled_w = dst->dimension(idx_width); const unsigned int pooled_h = dst->dimension(idx_height); //If it's not squared and optimized will be executed the MxN num_elems_processed_per_iteration = 1; if (is_square) { switch (src->data_type()) { case DataType::QASYMM8: case DataType::QASYMM8_SIGNED: switch (pool_size_x) { case 2: num_elems_processed_per_iteration = (pool_stride_x == 2) ? 8 : 15; break; case 3: num_elems_processed_per_iteration = (pool_stride_x == 2) ? 7 : 14; break; default: break; } break; case DataType::F16: num_elems_processed_per_iteration = 1; break; case DataType::F32: num_elems_processed_per_iteration = 1; break; default: ARM_COMPUTE_ERROR("Element size not supported"); break; } } bool window_changed = false; Window win{}; // Upper limit for the number of right/bottom border elements that are accessed TensorShape dst_shape{src->tensor_shape()}; dst_shape.set(0, pooled_w); dst_shape.set(1, pooled_h); TensorInfo dst_info(src->clone()->set_tensor_shape(dst_shape)); win = calculate_max_window(dst_info, Steps(num_elems_processed_per_iteration)); Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } } // namespace void CpuPool2dKernel::configure(ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &pool_info, ITensorInfo *indices) { ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst); const PadStrideInfo pad_stride_info = pool_info.pad_stride_info; const bool is_global_pooling = pool_info.is_global_pooling; // Get data layout const auto data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : pool_info.data_layout; const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); // Update pool size in case of global pooling const Size2D pool_size(is_global_pooling ? src->dimension(idx_width) : pool_info.pool_size.width, is_global_pooling ? src->dimension(idx_height) : pool_info.pool_size.height); // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, dst, pool_info, indices, pool_size)); const auto *uk = CpuPool2dKernel::get_implementation( PoolDataTypeISASelectorData{src->data_type(), src->data_layout(), (int)pad_stride_info.stride().first, pool_size, CPUInfo::get().get_isa()}); ARM_COMPUTE_ERROR_ON(uk == nullptr); // Set instance variables _pool_info = pool_info; _data_layout = src->data_layout(); _pool_size = pool_size; _pool_stride_x = pad_stride_info.stride().first; _run_method = uk->ukernel; _name = std::string("CpuPool2dKernel").append("/").append(uk->name); if (_data_layout == DataLayout::NHWC) { // Configure kernel window Window win = calculate_max_window(*dst, Steps()); ICpuKernel::configure(win); } else { // Configure kernel window auto win_config = validate_and_configure_window( src, dst, indices, pool_info, _num_elems_processed_per_iteration, pool_size.x(), pool_size.y()); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); ICpuKernel::configure(win_config.second); } } Status CpuPool2dKernel::validate(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &pool_info, const ITensorInfo *indices) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src); unsigned int num_elems_processed_per_iteration = 0; const bool is_global_pooling = pool_info.is_global_pooling; // Get data layout const auto data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : pool_info.data_layout; const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); unsigned int pool_size_x = is_global_pooling ? src->dimension(idx_width) : pool_info.pool_size.width; unsigned int pool_size_y = is_global_pooling ? src->dimension(idx_height) : pool_info.pool_size.height; ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, dst, pool_info, indices, Size2D(pool_size_x, pool_size_y))); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(src->clone().get(), dst->clone().get(), (indices) ? indices->clone().get() : nullptr, pool_info, num_elems_processed_per_iteration, pool_size_x, pool_size_y) .first); return Status{}; } void CpuPool2dKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window); ARM_COMPUTE_ERROR_ON(_run_method == nullptr); const ITensor *src = tensors.get_const_tensor(TensorType::ACL_SRC_0); ITensor *dst = tensors.get_tensor(TensorType::ACL_DST_0); ITensor *indices = tensors.get_tensor(TensorType::ACL_DST_1); const unsigned int pool_stride_x = _pool_info.pad_stride_info.stride().first; const unsigned int pool_stride_y = _pool_info.pad_stride_info.stride().second; const unsigned int pool_size = _pool_info.pool_size.width; Window window_src(window); if (_data_layout == DataLayout::NCHW) { // Set step for src in x and y direction for the src unsigned int window_x_inc = 0; switch (src->info()->data_type()) { case DataType::QASYMM8: case DataType::QASYMM8_SIGNED: { window_x_inc = pool_stride_x; if ((pool_size == 2 || pool_size == 3) && pool_stride_x < 3) { window_x_inc = (pool_stride_x == 2) ? _num_elems_processed_per_iteration * 2 : _num_elems_processed_per_iteration; } break; } case DataType::F16: case DataType::F32: { window_x_inc = pool_stride_x; break; } default: { ARM_COMPUTE_ERROR("Not supported"); } } window_src.set(Window::DimX, Window::Dimension(window.x().start() * pool_stride_x, window.x().end() * pool_stride_x, window_x_inc)); window_src.set(Window::DimY, Window::Dimension(window.y().start() * pool_stride_y, window.y().end() * pool_stride_y, pool_stride_y)); } else { window_src.set(Window::DimX, Window::Dimension(0, 1, 1)); window_src.set(Window::DimY, Window::Dimension(0, src->info()->dimension(1), pool_stride_x)); window_src.set(Window::DimZ, Window::Dimension(0, src->info()->dimension(2), pool_stride_y)); } _run_method(src, dst, indices, _pool_info, window_src, window); } const char *CpuPool2dKernel::name() const { return _name.c_str(); } const std::vector &CpuPool2dKernel::get_available_kernels() { return available_kernels; } } // namespace kernels } // namespace cpu } // namespace arm_compute