/* * Copyright (c) 2019-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/cpu/kernels/CpuGemmLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include "src/core/NEON/NEAsymm.h" #include namespace arm_compute { namespace cpu { namespace kernels { namespace { Status validate_arguments(const ITensorInfo *src, const ITensorInfo *bias, const ITensorInfo *dst, int min, int max) { ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::S32); ARM_COMPUTE_RETURN_ERROR_ON(min > max); // Check biases if exist if (bias != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, bias); ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1); ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(0) != bias->dimension(0)); } if (dst->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::QASYMM8_SIGNED); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(dst, src); } return Status{}; } } // namespace template void CpuGemmLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel::run_internal(const ITensor *src, const ITensor *bias, ITensor *dst, const Window &window) { const int32x4_t result_offset_after_shift_s32 = vdupq_n_s32(_result_offset_after_shift); const int8x16_t min_s8 = vdupq_n_s8(static_cast(_min)); const int8x16_t max_s8 = vdupq_n_s8(static_cast(_max)); ARM_COMPUTE_UNUSED(min_s8, max_s8); const int window_step_x = 16; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); Window win_collapsed = window.collapse_if_possible(window, Window::DimZ); win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator in(src, win_collapsed); Iterator out(dst, win_collapsed); if (bias != nullptr) { Window win_biases; win_biases.set(Window::DimX, Window::Dimension(0, 1, 1)); win_biases.set(Window::DimY, Window::Dimension(0, 1, 1)); Iterator bias_i(bias, win_biases); execute_window_loop( win_collapsed, [&](const Coordinates &) { // Compute 16 elements per iteration int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { int32x4x4_t in_s32 = {{vld1q_s32(reinterpret_cast(in.ptr()) + x + 0), vld1q_s32(reinterpret_cast(in.ptr()) + x + 4), vld1q_s32(reinterpret_cast(in.ptr()) + x + 8), vld1q_s32(reinterpret_cast(in.ptr()) + x + 12)}}; const int32x4x4_t bias_s32 = { {vld1q_s32(reinterpret_cast(bias_i.ptr()) + x + 0), vld1q_s32(reinterpret_cast(bias_i.ptr()) + x + 4), vld1q_s32(reinterpret_cast(bias_i.ptr()) + x + 8), vld1q_s32(reinterpret_cast(bias_i.ptr()) + x + 12)}}; // Add the bias to GEMM's result in_s32.val[0] = vaddq_s32(in_s32.val[0], bias_s32.val[0]); in_s32.val[1] = vaddq_s32(in_s32.val[1], bias_s32.val[1]); in_s32.val[2] = vaddq_s32(in_s32.val[2], bias_s32.val[2]); in_s32.val[3] = vaddq_s32(in_s32.val[3], bias_s32.val[3]); vst1q_s8(reinterpret_cast(out.ptr() + x), finalize_quantization(in_s32, _result_fixedpoint_multiplier, _result_shift, result_offset_after_shift_s32, min_s8, max_s8, is_bounded_relu)); } // Compute left-over elements for (; x < window_end_x; ++x) { const int32_t bias_value = *(reinterpret_cast(bias_i.ptr()) + x); int32_t in_value = *(reinterpret_cast(in.ptr()) + x); // Add bias in_value += bias_value; // Finalize and store the result *reinterpret_cast(out.ptr() + x) = finalize_quantization( in_value, _result_fixedpoint_multiplier, _result_shift, _result_offset_after_shift, static_cast(_min), static_cast(_max), is_bounded_relu); } }, in, out, bias_i); } else { execute_window_loop( win_collapsed, [&](const Coordinates &) { // Compute 16 elements per iteration int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { int32x4x4_t in_s32 = {{vld1q_s32(reinterpret_cast(in.ptr()) + x + 0), vld1q_s32(reinterpret_cast(in.ptr()) + x + 4), vld1q_s32(reinterpret_cast(in.ptr()) + x + 8), vld1q_s32(reinterpret_cast(in.ptr()) + x + 12)}}; vst1q_s8(reinterpret_cast(out.ptr() + x), finalize_quantization(in_s32, _result_fixedpoint_multiplier, _result_shift, result_offset_after_shift_s32, min_s8, max_s8, is_bounded_relu)); } // Compute left-over elements for (; x < window_end_x; ++x) { const int32_t in_value = *(reinterpret_cast(in.ptr()) + x); // Finalize and store the result *reinterpret_cast(out.ptr() + x) = finalize_quantization( in_value, _result_fixedpoint_multiplier, _result_shift, _result_offset_after_shift, static_cast(_min), static_cast(_max), is_bounded_relu); } }, in, out); } } void CpuGemmLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel::configure(ITensorInfo *src, ITensorInfo *bias, ITensorInfo *dst, int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift, int min, int max) { ARM_COMPUTE_UNUSED(bias); // Perform validate step ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, bias, dst, min, max)); _result_fixedpoint_multiplier = result_fixedpoint_multiplier; _result_shift = result_shift; _result_offset_after_shift = result_offset_after_shift; _min = min; _max = max; // Output auto initialization if not yet initialized auto_init_if_empty(*dst, src->clone()->set_data_type(DataType::QASYMM8_SIGNED)); // Configure kernel window Window win_config = calculate_max_window(*src, Steps()); ICpuKernel::configure(win_config); // Check if we need to clamp the result using min and max const bool is_bounded_relu = !(min <= -128 && max >= 127); _func = is_bounded_relu ? &CpuGemmLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel::run_internal : &CpuGemmLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel::run_internal; } Status CpuGemmLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel::validate( const ITensorInfo *src, const ITensorInfo *bias, const ITensorInfo *dst, int min, int max) { ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, bias, dst, min, max)); return Status{}; } void CpuGemmLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window); ARM_COMPUTE_ERROR_ON_MSG(tensors.empty(), "No inputs provided"); auto src = tensors.get_const_tensor(TensorType::ACL_SRC); auto bias = tensors.get_const_tensor(TensorType::ACL_BIAS); auto dst = tensors.get_tensor(TensorType::ACL_DST); (this->*_func)(src, bias, dst, window); } const char *CpuGemmLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel::name() const { return "CpuGemmLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel"; } } // namespace kernels } // namespace cpu } // namespace arm_compute