/* * Copyright (c) 2017-2022,2024 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/cpu/kernels/CpuGemmLowpOffsetContributionKernel.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include namespace arm_compute { namespace cpu { namespace kernels { namespace { Status validate_arguments(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, int32_t a_offset, int32_t b_offset) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(mm_result, 1, DataType::S32, DataType::F32); // We run if the offset is nonzero or a sum col has been provided, we need // the second option in case the QuantizationInfo is dynamic if (a_offset != 0 || vector_sum_col != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_col, 1, DataType::S32); ARM_COMPUTE_RETURN_ERROR_ON(vector_sum_col->dimension(0) != mm_result->dimension(0)); } // We run if the offset is nonzero or a sum row has been provided, we need // the second option in case the QuantizationInfo is dynamic if (b_offset != 0 || vector_sum_row != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_row, 1, DataType::S32); // Check if input is a 3D reinterpretation const bool reinterpret_as_3d = mm_result->num_dimensions() > 1 && mm_result->tensor_shape().y() != vector_sum_row->tensor_shape().x(); // Validate input ARM_COMPUTE_RETURN_ERROR_ON(reinterpret_as_3d && vector_sum_row->dimension(0) != (mm_result->dimension(1) * mm_result->dimension(2))); ARM_COMPUTE_RETURN_ERROR_ON(!reinterpret_as_3d && vector_sum_row->dimension(0) != mm_result->dimension(1)); TensorShape output_shape = mm_result->tensor_shape(); if (output_shape.num_dimensions() > 1) { const unsigned int output_batch_idx = reinterpret_as_3d ? 3 : 2; TensorShape vector_sum_row_shape = vector_sum_row->tensor_shape(); vector_sum_row_shape.collapse_from(1); output_shape.collapse_from(output_batch_idx); ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_row_shape[1] != output_shape[output_batch_idx], "mm_result tensor must have the same number of batches of output tensor"); if (vector_sum_col != nullptr) { TensorShape vector_sum_col_shape = vector_sum_col->tensor_shape(); vector_sum_col_shape.collapse_from(1); ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_col_shape[1] != 1 && vector_sum_col_shape[1] != vector_sum_row_shape[1], "vector_sum_col tensor must have the same number of batches of " "vector_sum_row_shape or the number of batches must be set to 1"); } } } return Status{}; } void run_offset_contribution_float(const Window &window, ITensor *mm_result, const ITensor *vector_sum_col, const ITensor *vector_sum_row, int32_t a_offset, int32_t b_offset, int32_t k_offset, float scale, bool slide_vector_sum_col, bool is_gemm3d) { Window collapsed_window = window.collapse_if_possible(window, Window::DimZ); collapsed_window.set(Window::DimX, Window::Dimension(0, 1, 1)); const int height_input = is_gemm3d ? mm_result->info()->dimension(1) : 0; const int depth_input = is_gemm3d ? mm_result->info()->dimension(2) : 1; const int window_start_x = window.x().start(); const int window_end_x = window.x().end(); const int window_step_x = 16; // if vector_sum_col is nullptr then stride_y is 0, else get stride_y const size_t sum_col_stride_y = (vector_sum_col != nullptr) ? (vector_sum_col->info()->strides_in_bytes().y()) : 0; Iterator mm_result_it(mm_result, collapsed_window); if ((a_offset != 0) && (b_offset != 0) && (vector_sum_col != nullptr) && (vector_sum_row != nullptr)) // true, true { // Set window for vector_sum_col Window win_vector_sum_col(collapsed_window); win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0)); win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0)); // Set window for vector_sum_row Window win_vector_sum_row(collapsed_window); win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0)); win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0)); win_vector_sum_row.set(Window::DimZ, Window::Dimension(0, 0, 0)); Iterator vector_sum_col_it(vector_sum_col, win_vector_sum_col); Iterator vector_sum_row_it(vector_sum_row, win_vector_sum_row); const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y(); // Offset in case vector_sum_col is batched const int vector_sum_col_batch_offset = slide_vector_sum_col ? vector_sum_col->info()->strides_in_bytes().z() : 0; execute_window_loop( collapsed_window, [&](const Coordinates &id) { const int batch_id = id.z() / depth_input; const size_t batch_offset_col = batch_id * (sum_col_stride_y); auto vector_sum_col_ptr = reinterpret_cast(vector_sum_col_it.ptr() + batch_offset_col + batch_id * vector_sum_col_batch_offset); auto mm_result_ptr = reinterpret_cast(mm_result_it.ptr()); // Compute the leftover term due to b_offset. int32_t b_offset_term_s32 = *(reinterpret_cast(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y) + id.y() + (id.z() % depth_input) * height_input); b_offset_term_s32 *= b_offset; const int32x4_t b_offset_term_s32_vec = vdupq_n_s32(b_offset_term_s32); int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { // Compute the leftover term due to a_offset. int32x4x4_t a_offset_term_s32 = { {vld1q_s32(vector_sum_col_ptr + x + 0), vld1q_s32(vector_sum_col_ptr + x + 4), vld1q_s32(vector_sum_col_ptr + x + 8), vld1q_s32(vector_sum_col_ptr + x + 12)}}; a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], a_offset); a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], a_offset); a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], a_offset); a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], a_offset); // Add a_offset_term_s32 and b_offset_term_s32 int32x4x4_t offset_term_s32 = { {vdupq_n_s32(k_offset), vdupq_n_s32(k_offset), vdupq_n_s32(k_offset), vdupq_n_s32(k_offset)}}; offset_term_s32.val[0] = vaddq_s32(offset_term_s32.val[0], vaddq_s32(a_offset_term_s32.val[0], b_offset_term_s32_vec)); offset_term_s32.val[1] = vaddq_s32(offset_term_s32.val[1], vaddq_s32(a_offset_term_s32.val[1], b_offset_term_s32_vec)); offset_term_s32.val[2] = vaddq_s32(offset_term_s32.val[2], vaddq_s32(a_offset_term_s32.val[2], b_offset_term_s32_vec)); offset_term_s32.val[3] = vaddq_s32(offset_term_s32.val[3], vaddq_s32(a_offset_term_s32.val[3], b_offset_term_s32_vec)); float32x4x4_t in_f32 = {{vld1q_f32(mm_result_ptr + x + 0), vld1q_f32(mm_result_ptr + x + 4), vld1q_f32(mm_result_ptr + x + 8), vld1q_f32(mm_result_ptr + x + 12)}}; // Convert and scale the S32 offsets to match the already scaled GEMM results float32x4x4_t offset_terms_scaled = {{ vmulq_n_f32(vcvtq_f32_s32(offset_term_s32.val[0]), scale), vmulq_n_f32(vcvtq_f32_s32(offset_term_s32.val[1]), scale), vmulq_n_f32(vcvtq_f32_s32(offset_term_s32.val[2]), scale), vmulq_n_f32(vcvtq_f32_s32(offset_term_s32.val[3]), scale), }}; // Add the offset terms to the GEMM result in_f32.val[0] = vaddq_f32(in_f32.val[0], offset_terms_scaled.val[0]); in_f32.val[1] = vaddq_f32(in_f32.val[1], offset_terms_scaled.val[1]); in_f32.val[2] = vaddq_f32(in_f32.val[2], offset_terms_scaled.val[2]); in_f32.val[3] = vaddq_f32(in_f32.val[3], offset_terms_scaled.val[3]); // Store the result with the offset contribution vst1q_f32(mm_result_ptr + x + 0, in_f32.val[0]); vst1q_f32(mm_result_ptr + x + 4, in_f32.val[1]); vst1q_f32(mm_result_ptr + x + 8, in_f32.val[2]); vst1q_f32(mm_result_ptr + x + 12, in_f32.val[3]); } // Left-overs loop for (; x < window_end_x; ++x) { // Compute the leftover term due to a_offset. int32_t a_offset_term_s32 = *(vector_sum_col_ptr + x); a_offset_term_s32 *= a_offset; // Add the offset terms to GEMM's result // Store the result with the offset contribution mm_result_ptr[x] += (k_offset + a_offset_term_s32 + b_offset_term_s32) * scale; } }, vector_sum_col_it, vector_sum_row_it, mm_result_it); } else if ((a_offset == 0) && (b_offset != 0) && (vector_sum_row != nullptr)) // false, true { ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_row); // Set window for vector_sum_row Window win_vector_sum_row(collapsed_window); win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0)); win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0)); win_vector_sum_row.set(Window::DimZ, Window::Dimension(0, 0, 0)); Iterator vector_sum_row_it(vector_sum_row, win_vector_sum_row); const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y(); execute_window_loop( collapsed_window, [&](const Coordinates &id) { const int batch_id = id.z() / depth_input; auto mm_result_ptr = reinterpret_cast(mm_result_it.ptr()); // Compute the leftover term due to b_offset. int32_t row_sum = *(reinterpret_cast(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y) + id.y() + (id.z() % depth_input) * height_input); float scaled_b_offset_term_f32 = row_sum * b_offset * scale; const float32x4_t b_offset_term_f32_vec = vdupq_n_f32(scaled_b_offset_term_f32); int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { float32x4x4_t in_f32 = {{vld1q_f32(mm_result_ptr + x + 0), vld1q_f32(mm_result_ptr + x + 4), vld1q_f32(mm_result_ptr + x + 8), vld1q_f32(mm_result_ptr + x + 12)}}; // Add the offset terms to GEMM's result in_f32.val[0] = vaddq_f32(in_f32.val[0], b_offset_term_f32_vec); in_f32.val[1] = vaddq_f32(in_f32.val[1], b_offset_term_f32_vec); in_f32.val[2] = vaddq_f32(in_f32.val[2], b_offset_term_f32_vec); in_f32.val[3] = vaddq_f32(in_f32.val[3], b_offset_term_f32_vec); // Store the result with the offset contribution vst1q_f32(mm_result_ptr + x + 0, in_f32.val[0]); vst1q_f32(mm_result_ptr + x + 4, in_f32.val[1]); vst1q_f32(mm_result_ptr + x + 8, in_f32.val[2]); vst1q_f32(mm_result_ptr + x + 12, in_f32.val[3]); } // Left-overs loop for (; x < window_end_x; ++x) { // Add the offset terms to GEMM's result // Store the result with the offset contribution mm_result_ptr[x] += scaled_b_offset_term_f32; } }, vector_sum_row_it, mm_result_it); } else if ((a_offset != 0) && (b_offset == 0) && (vector_sum_col != nullptr)) // true, false { // Set window for vector_sum_col Window win_vector_sum_col(collapsed_window); win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0)); win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0)); Iterator vector_sum_col_it(vector_sum_col, win_vector_sum_col); // Offset in case vector_sum_col is batched const int vector_sum_col_batch_offset = slide_vector_sum_col ? vector_sum_col->info()->strides_in_bytes().z() : 0; execute_window_loop( collapsed_window, [&](const Coordinates &id) { const int batch_id = id.z() / depth_input; const size_t batch_offset_col = batch_id * (sum_col_stride_y); // Value to offset vector_sum_col_ptr to allow for iteration of y values in tensor auto vector_sum_col_ptr = reinterpret_cast(vector_sum_col_it.ptr() + batch_offset_col + batch_id * vector_sum_col_batch_offset); auto mm_result_ptr = reinterpret_cast(mm_result_it.ptr()); int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { // Compute the leftover term due to a_offset. int32x4x4_t a_offset_term_s32 = { {vld1q_s32(vector_sum_col_ptr + x + 0), vld1q_s32(vector_sum_col_ptr + x + 4), vld1q_s32(vector_sum_col_ptr + x + 8), vld1q_s32(vector_sum_col_ptr + x + 12)}}; a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], a_offset); a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], a_offset); a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], a_offset); a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], a_offset); float32x4x4_t a_offset_term_scaled = {{ vmulq_n_f32(vcvtq_f32_s32(a_offset_term_s32.val[0]), scale), vmulq_n_f32(vcvtq_f32_s32(a_offset_term_s32.val[1]), scale), vmulq_n_f32(vcvtq_f32_s32(a_offset_term_s32.val[2]), scale), vmulq_n_f32(vcvtq_f32_s32(a_offset_term_s32.val[3]), scale), }}; float32x4x4_t in_f32 = {{vld1q_f32(mm_result_ptr + x + 0), vld1q_f32(mm_result_ptr + x + 4), vld1q_f32(mm_result_ptr + x + 8), vld1q_f32(mm_result_ptr + x + 12)}}; // Add the offset terms to GEMM's result in_f32.val[0] = vaddq_f32(in_f32.val[0], a_offset_term_scaled.val[0]); in_f32.val[1] = vaddq_f32(in_f32.val[1], a_offset_term_scaled.val[1]); in_f32.val[2] = vaddq_f32(in_f32.val[2], a_offset_term_scaled.val[2]); in_f32.val[3] = vaddq_f32(in_f32.val[3], a_offset_term_scaled.val[3]); // Store the result with the offset contribution vst1q_f32(mm_result_ptr + x + 0, in_f32.val[0]); vst1q_f32(mm_result_ptr + x + 4, in_f32.val[1]); vst1q_f32(mm_result_ptr + x + 8, in_f32.val[2]); vst1q_f32(mm_result_ptr + x + 12, in_f32.val[3]); } // Left-overs loop for (; x < window_end_x; ++x) { // Compute the leftover term due to a_offset. const int32_t a_offset_term_s32 = *(vector_sum_col_ptr + x); // Add the offset terms to GEMM's result // Store the result with the offset contribution mm_result_ptr[x] += a_offset_term_s32 * a_offset * scale; } }, vector_sum_col_it, mm_result_it); } else // false, false { // No offset contribution from matrix A and matrix B return; } } void run_offset_contribution(const Window &window, ITensor *mm_result, const ITensor *vector_sum_col, const ITensor *vector_sum_row, int32_t a_offset, int32_t b_offset, int32_t k_offset, bool slide_vector_sum_col, bool is_gemm3d) { Window collapsed_window = window.collapse_if_possible(window, Window::DimZ); collapsed_window.set(Window::DimX, Window::Dimension(0, 1, 1)); const int height_input = is_gemm3d ? mm_result->info()->dimension(1) : 0; const int depth_input = is_gemm3d ? mm_result->info()->dimension(2) : 1; const int window_start_x = window.x().start(); const int window_end_x = window.x().end(); const int window_step_x = 16; // if vector_sum_col is nullptr then stride_y is 0, else get stride_y const size_t sum_col_stride_y = (vector_sum_col != nullptr) ? (vector_sum_col->info()->strides_in_bytes().y()) : 0; Iterator mm_result_it(mm_result, collapsed_window); if ((a_offset != 0) && (b_offset != 0) && (vector_sum_col != nullptr) && (vector_sum_row != nullptr)) // true, true { // Set window for vector_sum_col Window win_vector_sum_col(collapsed_window); win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0)); win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0)); // Set window for vector_sum_row Window win_vector_sum_row(collapsed_window); win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0)); win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0)); win_vector_sum_row.set(Window::DimZ, Window::Dimension(0, 0, 0)); Iterator vector_sum_col_it(vector_sum_col, win_vector_sum_col); Iterator vector_sum_row_it(vector_sum_row, win_vector_sum_row); const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y(); // Offset in case vector_sum_col is batched const int vector_sum_col_batch_offset = slide_vector_sum_col ? vector_sum_col->info()->strides_in_bytes().z() : 0; execute_window_loop( collapsed_window, [&](const Coordinates &id) { const int batch_id = id.z() / depth_input; const size_t batch_offset_col = batch_id * (sum_col_stride_y); auto vector_sum_col_ptr = reinterpret_cast(vector_sum_col_it.ptr() + batch_offset_col + batch_id * vector_sum_col_batch_offset); auto mm_result_ptr = reinterpret_cast(mm_result_it.ptr()); // Compute the leftover term due to b_offset. int32_t b_offset_term_s32 = *(reinterpret_cast(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y) + id.y() + (id.z() % depth_input) * height_input); b_offset_term_s32 *= b_offset; const int32x4_t b_offset_term_s32_vec = vdupq_n_s32(b_offset_term_s32); int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { // Compute the leftover term due to a_offset. int32x4x4_t a_offset_term_s32 = { {vld1q_s32(vector_sum_col_ptr + x + 0), vld1q_s32(vector_sum_col_ptr + x + 4), vld1q_s32(vector_sum_col_ptr + x + 8), vld1q_s32(vector_sum_col_ptr + x + 12)}}; a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], a_offset); a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], a_offset); a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], a_offset); a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], a_offset); // Add a_offset_term_s32 and b_offset_term_s32 int32x4x4_t offset_term_s32 = { {vdupq_n_s32(k_offset), vdupq_n_s32(k_offset), vdupq_n_s32(k_offset), vdupq_n_s32(k_offset)}}; offset_term_s32.val[0] = vaddq_s32(offset_term_s32.val[0], vaddq_s32(a_offset_term_s32.val[0], b_offset_term_s32_vec)); offset_term_s32.val[1] = vaddq_s32(offset_term_s32.val[1], vaddq_s32(a_offset_term_s32.val[1], b_offset_term_s32_vec)); offset_term_s32.val[2] = vaddq_s32(offset_term_s32.val[2], vaddq_s32(a_offset_term_s32.val[2], b_offset_term_s32_vec)); offset_term_s32.val[3] = vaddq_s32(offset_term_s32.val[3], vaddq_s32(a_offset_term_s32.val[3], b_offset_term_s32_vec)); int32x4x4_t in_s32 = {{vld1q_s32(mm_result_ptr + x + 0), vld1q_s32(mm_result_ptr + x + 4), vld1q_s32(mm_result_ptr + x + 8), vld1q_s32(mm_result_ptr + x + 12)}}; // Add the offset terms to GEMM's result in_s32.val[0] = vaddq_s32(in_s32.val[0], offset_term_s32.val[0]); in_s32.val[1] = vaddq_s32(in_s32.val[1], offset_term_s32.val[1]); in_s32.val[2] = vaddq_s32(in_s32.val[2], offset_term_s32.val[2]); in_s32.val[3] = vaddq_s32(in_s32.val[3], offset_term_s32.val[3]); // Store the result with the offset contribution vst1q_s32(mm_result_ptr + x + 0, in_s32.val[0]); vst1q_s32(mm_result_ptr + x + 4, in_s32.val[1]); vst1q_s32(mm_result_ptr + x + 8, in_s32.val[2]); vst1q_s32(mm_result_ptr + x + 12, in_s32.val[3]); } // Left-overs loop for (; x < window_end_x; ++x) { // Compute the leftover term due to a_offset. int32_t a_offset_term_s32 = *(vector_sum_col_ptr + x); a_offset_term_s32 *= a_offset; // Add the offset terms to GEMM's result // Store the result with the offset contribution mm_result_ptr[x] += k_offset + a_offset_term_s32 + b_offset_term_s32; } }, vector_sum_col_it, vector_sum_row_it, mm_result_it); } else if ((a_offset == 0) && (b_offset != 0) && (vector_sum_row != nullptr)) // false, true { ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_row); // Set window for vector_sum_row Window win_vector_sum_row(collapsed_window); win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0)); win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0)); win_vector_sum_row.set(Window::DimZ, Window::Dimension(0, 0, 0)); Iterator vector_sum_row_it(vector_sum_row, win_vector_sum_row); const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y(); execute_window_loop( collapsed_window, [&](const Coordinates &id) { const int batch_id = id.z() / depth_input; auto mm_result_ptr = reinterpret_cast(mm_result_it.ptr()); // Compute the leftover term due to b_offset. int32_t b_offset_term_s32 = *(reinterpret_cast(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y) + id.y() + (id.z() % depth_input) * height_input); b_offset_term_s32 *= b_offset; const int32x4_t b_offset_term_s32_vec = vdupq_n_s32(b_offset_term_s32); int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { int32x4x4_t in_s32 = {{vld1q_s32(mm_result_ptr + x + 0), vld1q_s32(mm_result_ptr + x + 4), vld1q_s32(mm_result_ptr + x + 8), vld1q_s32(mm_result_ptr + x + 12)}}; // Add the offset terms to GEMM's result in_s32.val[0] = vaddq_s32(in_s32.val[0], b_offset_term_s32_vec); in_s32.val[1] = vaddq_s32(in_s32.val[1], b_offset_term_s32_vec); in_s32.val[2] = vaddq_s32(in_s32.val[2], b_offset_term_s32_vec); in_s32.val[3] = vaddq_s32(in_s32.val[3], b_offset_term_s32_vec); // Store the result with the offset contribution vst1q_s32(mm_result_ptr + x + 0, in_s32.val[0]); vst1q_s32(mm_result_ptr + x + 4, in_s32.val[1]); vst1q_s32(mm_result_ptr + x + 8, in_s32.val[2]); vst1q_s32(mm_result_ptr + x + 12, in_s32.val[3]); } // Left-overs loop for (; x < window_end_x; ++x) { // Add the offset terms to GEMM's result // Store the result with the offset contribution mm_result_ptr[x] += b_offset_term_s32; } }, vector_sum_row_it, mm_result_it); } else if ((a_offset != 0) && (b_offset == 0) && (vector_sum_col != nullptr)) // true, false { // Set window for vector_sum_col Window win_vector_sum_col(collapsed_window); win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0)); win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0)); Iterator vector_sum_col_it(vector_sum_col, win_vector_sum_col); // Offset in case vector_sum_col is batched const int vector_sum_col_batch_offset = slide_vector_sum_col ? vector_sum_col->info()->strides_in_bytes().z() : 0; execute_window_loop( collapsed_window, [&](const Coordinates &id) { const int batch_id = id.z() / depth_input; const size_t batch_offset_col = batch_id * (sum_col_stride_y); // Value to offset vector_sum_col_ptr to allow for iteration of y values in tensor auto vector_sum_col_ptr = reinterpret_cast(vector_sum_col_it.ptr() + batch_offset_col + batch_id * vector_sum_col_batch_offset); auto mm_result_ptr = reinterpret_cast(mm_result_it.ptr()); int x = window_start_x; for (; x <= (window_end_x - window_step_x); x += window_step_x) { // Compute the leftover term due to a_offset. int32x4x4_t a_offset_term_s32 = { {vld1q_s32(vector_sum_col_ptr + x + 0), vld1q_s32(vector_sum_col_ptr + x + 4), vld1q_s32(vector_sum_col_ptr + x + 8), vld1q_s32(vector_sum_col_ptr + x + 12)}}; a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], a_offset); a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], a_offset); a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], a_offset); a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], a_offset); int32x4x4_t in_s32 = {{vld1q_s32(mm_result_ptr + x + 0), vld1q_s32(mm_result_ptr + x + 4), vld1q_s32(mm_result_ptr + x + 8), vld1q_s32(mm_result_ptr + x + 12)}}; // Add the offset terms to GEMM's result in_s32.val[0] = vaddq_s32(in_s32.val[0], a_offset_term_s32.val[0]); in_s32.val[1] = vaddq_s32(in_s32.val[1], a_offset_term_s32.val[1]); in_s32.val[2] = vaddq_s32(in_s32.val[2], a_offset_term_s32.val[2]); in_s32.val[3] = vaddq_s32(in_s32.val[3], a_offset_term_s32.val[3]); // Store the result with the offset contribution vst1q_s32(mm_result_ptr + x + 0, in_s32.val[0]); vst1q_s32(mm_result_ptr + x + 4, in_s32.val[1]); vst1q_s32(mm_result_ptr + x + 8, in_s32.val[2]); vst1q_s32(mm_result_ptr + x + 12, in_s32.val[3]); } // Left-overs loop for (; x < window_end_x; ++x) { // Compute the leftover term due to a_offset. const int32_t a_offset_term_s32 = *(vector_sum_col_ptr + x); // Add the offset terms to GEMM's result // Store the result with the offset contribution mm_result_ptr[x] += a_offset_term_s32 * a_offset; } }, vector_sum_col_it, mm_result_it); } else // false, false { // No offset contribution from matrix A and matrix B return; } } } // namespace void CpuGemmLowpOffsetContributionKernel::configure(ITensorInfo *mm_result, ITensorInfo *vector_sum_col, ITensorInfo *vector_sum_row, int32_t k, int32_t a_offset, int32_t b_offset, float scale) { // Perform validate step ARM_COMPUTE_UNUSED(vector_sum_row); ARM_COMPUTE_ERROR_ON_NULLPTR(mm_result); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(mm_result, vector_sum_col, vector_sum_row, a_offset, b_offset)); _a_offset = a_offset; _b_offset = b_offset; _k = k; _scale = scale; if (vector_sum_col != nullptr) { // Check if vector_sum_col_shape should be slidden or not // Don't slide vector_sum_col_shape along the y dimension if vector_sum_col_shape has just 1 dimension and vector_sum_row_shape more than 1 // This scenario can happen when the the matrix multiplication is used to perform a convolution operation _slide_vector_sum_col = vector_sum_col->tensor_shape().num_dimensions() > 1; } // Configure kernel window Window win = calculate_max_window(*mm_result, Steps()); ICpuKernel::configure(win); } void CpuGemmLowpOffsetContributionKernel::set_a_offset(int32_t a_offset) { _a_offset = a_offset; } void CpuGemmLowpOffsetContributionKernel::set_b_offset(int32_t b_offset) { _b_offset = b_offset; } void CpuGemmLowpOffsetContributionKernel::set_scale(float scale) { _scale = scale; } Status CpuGemmLowpOffsetContributionKernel::validate(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, int32_t a_offset, int32_t b_offset) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(mm_result, vector_sum_col, vector_sum_row, a_offset, b_offset)); return Status{}; } void CpuGemmLowpOffsetContributionKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window); auto vector_sum_col = tensors.get_const_tensor(TensorType::ACL_SRC_0); auto vector_sum_row = tensors.get_const_tensor(TensorType::ACL_SRC_1); auto mm_result = tensors.get_tensor(TensorType::ACL_DST); // Check if input is a 3D reinterpretation const bool reinterpret_as_3d = vector_sum_row != nullptr && mm_result->info()->num_dimensions() > 1 && mm_result->info()->tensor_shape().y() != vector_sum_row->info()->tensor_shape().x(); // check to see what is the output type of result auto k_offset = _a_offset * _b_offset * _k; if (mm_result->info()->data_type() == DataType::F32) { run_offset_contribution_float(window, mm_result, vector_sum_col, vector_sum_row, _a_offset, _b_offset, k_offset, _scale, _slide_vector_sum_col, reinterpret_as_3d); } else { run_offset_contribution(window, mm_result, vector_sum_col, vector_sum_row, _a_offset, _b_offset, k_offset, _slide_vector_sum_col, reinterpret_as_3d); } } const char *CpuGemmLowpOffsetContributionKernel::name() const { return "CpuGemmLowpOffsetContributionKernel"; } } // namespace kernels } // namespace cpu } // namespace arm_compute