/* * Copyright (c) 2021-2022 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/cpu/kernels/CpuDirectConv3dKernel.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/IAccessWindow.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "src/core/CPP/Validate.h" #include "src/core/NEON/wrapper/wrapper.h" #include "src/core/common/Registrars.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/cpu/kernels/conv3d/neon/list.h" #include using namespace arm_compute::detail; namespace arm_compute { namespace cpu { namespace kernels { namespace { static const std::vector available_kernels = { #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) { "neon_fp16_directconv3d", [](const DataTypeISASelectorData & data) { return data.dt == DataType::F16 && data.isa.fp16; }, REGISTER_FP16_NEON(arm_compute::cpu::directconv3d_float_neon_ndhwc) }, #endif /* !defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) */ { "neon_fp32_directconv3d", [](const DataTypeISASelectorData & data) { return data.dt == DataType::F32; }, REGISTER_FP32_NEON(arm_compute::cpu::directconv3d_float_neon_ndhwc) }, { "neon_qasymm8_directconv3d", [](const DataTypeISASelectorData & data) { return data.dt == DataType::QASYMM8; }, REGISTER_QASYMM8_NEON(arm_compute::cpu::directconv3d_quantized_neon_ndhwc) }, { "neon_qasymm8_signed_directconv3d", [](const DataTypeISASelectorData & data) { return data.dt == DataType::QASYMM8_SIGNED; }, REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::directconv3d_quantized_neon_ndhwc) } }; Status validate_arguments(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *src2, const ITensorInfo *dst, const Conv3dInfo &conv_info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst); ARM_COMPUTE_RETURN_ERROR_ON(src0->data_layout() != DataLayout::NDHWC); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(src0, src1, dst); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src0); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src0, 1, DataType::F16, DataType::F32, DataType::QASYMM8, DataType::QASYMM8_SIGNED); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src0, src1); ARM_COMPUTE_RETURN_ERROR_ON(conv_info.dilation != Size3D(1U, 1U, 1U)); const auto *uk = CpuDirectConv3dKernel::get_implementation(DataTypeISASelectorData{ src0->data_type(), CPUInfo::get().get_isa() }); ARM_COMPUTE_RETURN_ERROR_ON(uk == nullptr || uk->ukernel == nullptr); const DataLayout data_layout = src0->data_layout(); const int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL); // Weight layout is D, H, W, Cin, Cout ARM_COMPUTE_RETURN_ERROR_ON(src1->num_dimensions() > 5); ARM_COMPUTE_RETURN_ERROR_ON(src1->dimension(1) != src0->dimension(channel_idx)); if(src2 != nullptr) { if(is_data_type_quantized(src0->data_type())) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src2, 1, DataType::S32); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src1, src2); } ARM_COMPUTE_RETURN_ERROR_ON_MSG(src2->dimension(0) != src1->dimension(0), "Biases size and number of dst feature maps should match"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(src2->num_dimensions() > 1, "Biases should be one dimensional"); } // Checks performed when output is configured if(dst->total_size() != 0) { TensorShape output_shape = misc::shape_calculator::compute_conv3d_shape(src0->tensor_shape(), src1->tensor_shape(), conv_info); DataType data_type = src0->data_type(); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(dst->tensor_shape(), output_shape); ARM_COMPUTE_RETURN_ERROR_ON(dst->data_type() != data_type); } return Status{}; } } // namespace void CpuDirectConv3dKernel::configure(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *src2, ITensorInfo *dst, const Conv3dInfo &conv_info) { ARM_COMPUTE_UNUSED(src2); ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst); const auto *uk = CpuDirectConv3dKernel::get_implementation(DataTypeISASelectorData{ src0->data_type(), CPUInfo::get().get_isa() }); ARM_COMPUTE_ERROR_ON_NULLPTR(uk); _conv_info = conv_info; _run_method = uk->ukernel; _name = std::string("CpuDirectConv3dKernel").append("/").append(uk->name); // Get convolved dimensions TensorShape output_shape = misc::shape_calculator::compute_conv3d_shape(src0->tensor_shape(), src1->tensor_shape(), conv_info); DataType data_type = src0->data_type(); // Output auto inizialitation if not yet initialized auto_init_if_empty(*dst, output_shape, 1, data_type); // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src0, src1, src2, dst, conv_info)); // Configure kernel window Window win = calculate_max_window(*dst, Steps()); ICpuKernel::configure(win); } Status CpuDirectConv3dKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *src2, const ITensorInfo *dst, const Conv3dInfo &conv_info) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src0, src1, src2, dst, conv_info)); return Status{}; } void CpuDirectConv3dKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window); ARM_COMPUTE_ERROR_ON(_run_method == nullptr); auto src0 = tensors.get_const_tensor(TensorType::ACL_SRC_0); auto src1 = tensors.get_const_tensor(TensorType::ACL_SRC_1); auto src2 = tensors.get_const_tensor(TensorType::ACL_SRC_2); auto dst = tensors.get_tensor(TensorType::ACL_DST); _run_method(src0, src1, src2, dst, _conv_info, window); } const char *CpuDirectConv3dKernel::name() const { return _name.c_str(); } const std::vector &CpuDirectConv3dKernel::get_available_kernels() { return available_kernels; } } // namespace kernels } // namespace cpu } // namespace arm_compute