/* * Copyright (c) 2017-2022 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/cpu/kernels/CpuDirectConv2dKernel.h" #include "src/core/NEON/kernels/detail/NEDirectConvolutionDetail.h" #include "src/core/NEON/wrapper/wrapper.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/IAccessWindow.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "src/core/AccessWindowStatic.h" #include "src/core/CPP/Validate.h" #include "src/core/NEON/NEFixedPoint.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include using namespace arm_compute::detail; namespace arm_compute { namespace cpu { namespace kernels { namespace { Status validate_arguments(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *dst, const PadStrideInfo &conv_info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst); ARM_COMPUTE_RETURN_ERROR_ON(src->data_layout() == DataLayout::UNKNOWN); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, weights); const DataLayout data_layout = src->data_layout(); const int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL); ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(channel_idx) != src->dimension(channel_idx)); ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(width_idx) != weights->dimension(height_idx)); ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4); ARM_COMPUTE_RETURN_ERROR_ON(data_layout == DataLayout::NHWC && src->data_type() != DataType::F32); ARM_COMPUTE_UNUSED(width_idx); // Checks performed when output is configured if(dst->total_size() != 0) { TensorShape output_shape = misc::shape_calculator::compute_deep_convolution_shape(*src, *weights, conv_info); DataType data_type = src->data_type(); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(dst->tensor_shape(), output_shape); ARM_COMPUTE_RETURN_ERROR_ON(dst->data_type() != data_type); } return Status{}; } std::pair validate_and_configure_window(ITensorInfo *src, ITensorInfo *dst) { ARM_COMPUTE_ERROR_ON(src->data_layout() == DataLayout::UNKNOWN); ARM_COMPUTE_UNUSED(src); Window win{}; bool window_changed = false; // Configure window without any padding win = calculate_max_window(*dst, Steps()); Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } bool have_zero_x_internal_padding(ITensorInfo *src, const ITensorInfo *weights) { return (src->padding().left == 0 && weights->padding().left == 0 && src->padding().right == 0 && weights->padding().right == 0); } } // namespace template void CpuDirectConv2dKernel::convolve_nhwc_optimized(const Window &window, const ITensor *src, const ITensor *weights, ITensor *dst) { // This function assumes that input and weights have not padding in channel // Declare useful types using vtype = wrapper::traits::neon_bitvector; using vector_type = typename vtype::type; using tag_type = typename vtype::tag_type; // Scalar quantities const int element_size = src->info()->element_size(); const int input_stride_w = src->info()->strides_in_bytes().y() / element_size; const int input_stride_h = src->info()->strides_in_bytes().z() / element_size; const int input_stride_n = src->info()->strides_in_bytes()[3] / element_size; const int input_dim_w = src->info()->dimension(1); const int input_dim_h = src->info()->dimension(2); const int output_stride_c = dst->info()->strides_in_bytes().x(); const unsigned int kernel_stride_w = weights->info()->strides_in_bytes().y() / element_size; const unsigned int kernel_stride_h = weights->info()->strides_in_bytes().z() / element_size; const int kernel_dim_w = weights->info()->dimension(1); const int kernel_dim_h = weights->info()->dimension(2); const int conv_pad_top = _conv_info.pad_top(); const int conv_pad_left = _conv_info.pad_left(); const int conv_stride_w = std::get<0>(_conv_info.stride()); const int conv_stride_h = std::get<1>(_conv_info.stride()); // Setup input window for the output iterator Window window_out = window; window_out.set(Window::DimX, Window::Dimension(0, 1, 1)); // Setup input window for the weights iterator Window window_w = calculate_max_window(*weights->info(), Steps()); window_w.set(Window::DimX, Window::Dimension(0, 1, 1)); window_w.set(Window::DimY, Window::Dimension(0, 1, 1)); window_w.set(Window::DimZ, Window::Dimension(0, 1, 1)); Iterator out(dst, window_out); Iterator wei(weights, window_w); constexpr int num_elems_read_per_iteration = 16 / sizeof(T); /* * This implementation parallelize the full WC plane of input and weights by * treating them as series of elements. So for example, a 3x3 weights and * floating point vector operations of 4 elements per time, the first 3 * channel elements of the first row would be taken and additionally the first * element of the second row. The 9 elements in each single WC weight plane * would require 2 4-element vector operations and a last single element operation. * * This works since when we create the input vector to multiply with the weights, * the exact required elements are loaded in the same order. Therefore the * multiplication works on the correct input/weight elements. */ execute_window_loop(window_out, [&](const Coordinates & id) { /* * In here we create theoretical indexes which then we validate for both * inputs and weights. * As a reminder, this loop take each output point in NHW, C is treated * in the weights loop. */ // We are computing the theoretical starting input starting points const int in_w_start_t = static_cast(id.y()) * conv_stride_w - conv_pad_left; const int in_h_start_t = static_cast(id.z()) * conv_stride_h - conv_pad_top; const int in_w_end_t = in_w_start_t + kernel_dim_w; const int in_h_end_t = in_h_start_t + kernel_dim_h; // We are computing the valid initial and ending input points by checking the borders const int in_w_start = std::max(in_w_start_t, 0); const int in_h_start = std::max(in_h_start_t, 0); const int in_w_end = std::min(in_w_end_t, input_dim_w); const int in_h_end = std::min(in_h_end_t, input_dim_h); // We use the input points to select the valid weight points to use const int index_wc_start = (in_w_start - in_w_start_t) * kernel_stride_w; const int index_h_start = in_h_start - in_h_start_t; const int index_wc_end = (kernel_dim_w - (in_w_end_t - in_w_end)) * kernel_stride_w; const int index_h_end = kernel_dim_h - (in_h_end_t - in_h_end); execute_window_loop(window_w, [&](const Coordinates & id_w) { /* * This is the loop in the weights, and it goes along N (the batches) * As a reminder, the batches of the weights are translated into the * channels of the output */ const T *in_ptr_row = reinterpret_cast(src->buffer() + src->info()->offset_first_element_in_bytes()) + id[3] * input_stride_n + in_w_start * input_stride_w + in_h_start * input_stride_h; const T *weights_ptr_row = reinterpret_cast(wei.ptr()) + index_h_start * kernel_stride_h; uint8_t *out_ptr = out.ptr() + id_w[3] * output_stride_c; T out_temp = static_cast(0); for(int index_h = index_h_start; index_h < index_h_end; ++index_h, in_ptr_row += input_stride_h, weights_ptr_row += kernel_stride_h) { const T *in_ptr_mover = in_ptr_row; int index_wc = index_wc_start; vector_type out_temp_vec = wrapper::vdup_n(static_cast(0), tag_type()); for(; index_wc <= index_wc_end - num_elems_read_per_iteration; index_wc += num_elems_read_per_iteration, in_ptr_mover += num_elems_read_per_iteration) { const auto src_vec = wrapper::vloadq(in_ptr_mover); const auto w_vec = wrapper::vloadq(weights_ptr_row + index_wc); out_temp_vec = wrapper::vmla(out_temp_vec, w_vec, src_vec); } out_temp += vreduce(out_temp_vec); for(; index_wc < index_wc_end; ++index_wc, ++in_ptr_mover) { const auto src_val = *(in_ptr_mover); const auto w_val = *(weights_ptr_row + index_wc); out_temp += src_val * w_val; } } *(reinterpret_cast(out_ptr)) = out_temp; }, wei); }, out); } template void CpuDirectConv2dKernel::convolve_nhwc(const Window &window, const ITensor *src, const ITensor *weights, ITensor *dst) { // Declare useful types using vtype = wrapper::traits::neon_bitvector; using vector_type = typename vtype::type; using tag_type = typename vtype::tag_type; // Scalar quantities const int element_size = src->info()->element_size(); const int input_stride_w = src->info()->strides_in_bytes().y() / element_size; const int input_stride_h = src->info()->strides_in_bytes().z() / element_size; const int input_stride_n = src->info()->strides_in_bytes()[3] / element_size; const int input_dim_w = src->info()->dimension(1); const int input_dim_h = src->info()->dimension(2); const int output_stride_c = dst->info()->strides_in_bytes().x(); const unsigned int kernel_stride_w = weights->info()->strides_in_bytes().y() / element_size; const unsigned int kernel_stride_h = weights->info()->strides_in_bytes().z() / element_size; const int kernel_dim_w = weights->info()->dimension(1); const int kernel_dim_h = weights->info()->dimension(2); const int conv_pad_top = _conv_info.pad_top(); const int conv_pad_left = _conv_info.pad_left(); const int conv_stride_w = std::get<0>(_conv_info.stride()); const int conv_stride_h = std::get<1>(_conv_info.stride()); // Setup input window for the output iterator Window window_out = window; window_out.set(Window::DimX, Window::Dimension(0, 1, 1)); // Setup input window for the weights iterator Window window_w = calculate_max_window(*weights->info(), Steps()); window_w.set(Window::DimX, Window::Dimension(0, 1, 1)); window_w.set(Window::DimY, Window::Dimension(0, 1, 1)); window_w.set(Window::DimZ, Window::Dimension(0, 1, 1)); Iterator out(dst, window_out); Iterator wei(weights, window_w); constexpr int num_elems_read_per_iteration = 16 / sizeof(T); execute_window_loop(window_out, [&](const Coordinates & id) { // We are computing the theoretical starting input starting points const int in_w_start_t = static_cast(id.y()) * conv_stride_w - conv_pad_left; const int in_h_start_t = static_cast(id.z()) * conv_stride_h - conv_pad_top; const int in_w_end_t = in_w_start_t + kernel_dim_w; const int in_h_end_t = in_h_start_t + kernel_dim_h; // We are computing the valid initial and ending input points by checking the borders const int in_w_start = std::max(in_w_start_t, 0); const int in_h_start = std::max(in_h_start_t, 0); const int in_w_end = std::min(in_w_end_t, input_dim_w); const int in_h_end = std::min(in_h_end_t, input_dim_h); // We use the input points to select the valid weight points to use const int wei_w_start = in_w_start - in_w_start_t; const int wei_h_start = in_h_start - in_h_start_t; const int wei_w_end = kernel_dim_w - (in_w_end_t - in_w_end); const int wei_h_end = kernel_dim_h - (in_h_end_t - in_h_end); const int index_c_end = weights->info()->dimension(0); const T *const in_ptr_start = reinterpret_cast(src->buffer() + src->info()->offset_first_element_in_bytes()) + id[3] * input_stride_n; execute_window_loop(window_w, [&](const Coordinates & id_w) { const T *const weights_ptr_start = reinterpret_cast(wei.ptr()); uint8_t *out_ptr = out.ptr() + id_w[3] * output_stride_c; T out_temp = static_cast(0); for(int index_wei_h = wei_h_start, index_in_h = in_h_start; index_wei_h < wei_h_end; ++index_wei_h, ++index_in_h) { const T *const in_ptr_row = in_ptr_start + index_in_h * input_stride_h; const T *const weights_ptr_row = weights_ptr_start + index_wei_h * kernel_stride_h; for(int index_wei_w = wei_w_start, index_in_w = in_w_start; index_wei_w < wei_w_end; ++index_wei_w, ++index_in_w) { const T *in_ptr_mover = in_ptr_row + index_in_w * input_stride_w; const T *weights_ptr_mover = weights_ptr_row + index_wei_w * kernel_stride_w; int index_c = 0; vector_type out_temp_vec = wrapper::vdup_n(static_cast(0), tag_type()); for(; index_c <= index_c_end - num_elems_read_per_iteration; index_c += num_elems_read_per_iteration, in_ptr_mover += num_elems_read_per_iteration, weights_ptr_mover += num_elems_read_per_iteration) { const auto src_vec = wrapper::vloadq(in_ptr_mover); const auto w_vec = wrapper::vloadq(weights_ptr_mover); out_temp_vec = wrapper::vmla(out_temp_vec, w_vec, src_vec); } out_temp += vreduce(out_temp_vec); for(; index_c < index_c_end; ++index_c, ++in_ptr_mover, ++weights_ptr_mover) { const auto src_val = *(in_ptr_mover); const auto w_val = *(weights_ptr_mover); out_temp += src_val * w_val; } } } *(reinterpret_cast(out_ptr)) = out_temp; }, wei); }, out); } template void CpuDirectConv2dKernel::convolve_nchw(const Window &window, const ITensor *src, const ITensor *weights, ITensor *dst) { // Declare useful types using vtype = wrapper::traits::neon_bitvector; using vector_type = typename vtype::type; using tag_type = typename vtype::tag_type; // Scalar quantities const int element_size = src->info()->element_size(); const int input_stride_w = src->info()->strides_in_bytes()[0] / element_size; const int input_stride_h = src->info()->strides_in_bytes()[1] / element_size; const int input_stride_c = src->info()->strides_in_bytes()[2] / element_size; const int input_stride_n = src->info()->strides_in_bytes()[3] / element_size; const int input_dim_w = src->info()->dimension(0); const int input_dim_h = src->info()->dimension(1); const int output_stride_c = dst->info()->strides_in_bytes()[2]; const unsigned int kernel_stride_w = weights->info()->strides_in_bytes().x() / element_size; const unsigned int kernel_stride_h = weights->info()->strides_in_bytes().y() / element_size; const unsigned int kernel_stride_c = weights->info()->strides_in_bytes().z() / element_size; const int kernel_dim_w = weights->info()->dimension(0); const int kernel_dim_h = weights->info()->dimension(1); const int conv_pad_top = _conv_info.pad_top(); const int conv_pad_left = _conv_info.pad_left(); const int conv_stride_w = std::get<0>(_conv_info.stride()); const int conv_stride_h = std::get<1>(_conv_info.stride()); // Setup input window for the output iterator Window window_out = window; window_out.set(Window::DimZ, Window::Dimension(0, 1, 1)); // Setup input window for the weights iterator Window window_w = calculate_max_window(*weights->info(), Steps()); window_w.set(Window::DimX, Window::Dimension(0, 1, 1)); window_w.set(Window::DimY, Window::Dimension(0, 1, 1)); window_w.set(Window::DimZ, Window::Dimension(0, 1, 1)); Iterator out(dst, window_out); Iterator wei(weights, window_w); constexpr int num_elems_read_per_iteration = 16 / sizeof(T); execute_window_loop(window_out, [&](const Coordinates & id) { // We are computing the theoretical starting input starting points const int in_w_start_t = static_cast(id.x()) * conv_stride_w - conv_pad_left; const int in_h_start_t = static_cast(id.y()) * conv_stride_h - conv_pad_top; const int in_w_end_t = in_w_start_t + kernel_dim_w; const int in_h_end_t = in_h_start_t + kernel_dim_h; // We are computing the valid initial and ending input points by checking the borders const int in_w_start = std::max(in_w_start_t, 0); const int in_h_start = std::max(in_h_start_t, 0); const int in_w_end = std::min(in_w_end_t, input_dim_w); const int in_h_end = std::min(in_h_end_t, input_dim_h); // We use the input points to select the valid weight points to use const int wei_w_start = in_w_start - in_w_start_t; const int wei_h_start = in_h_start - in_h_start_t; const int wei_h_end = kernel_dim_h - (in_h_end_t - in_h_end); const int index_c_end = weights->info()->dimension(2); const T *const in_ptr_start = reinterpret_cast(src->buffer() + src->info()->offset_first_element_in_bytes()) + id[3] * input_stride_n; execute_window_loop(window_w, [&](const Coordinates & id_w) { const T *const weights_ptr_start = reinterpret_cast(wei.ptr()); uint8_t *out_ptr = out.ptr() + id_w[3] * output_stride_c; T out_temp = static_cast(0); for(int index_wei_c = 0, index_in_c = 0; index_wei_c < index_c_end; ++index_wei_c, ++index_in_c) { const T *const in_ptr_row_0 = in_ptr_start + index_in_c * input_stride_c; const T *const weights_ptr_row_0 = weights_ptr_start + index_wei_c * kernel_stride_c; for(int index_wei_h = wei_h_start, index_in_h = in_h_start; index_wei_h < wei_h_end; ++index_wei_h, ++index_in_h) { const T *in_ptr_row = in_ptr_row_0 + index_in_h * input_stride_h; const T *weights_ptr_row = weights_ptr_row_0 + index_wei_h * kernel_stride_h; int index_w = in_w_start; int index_wei_w = wei_w_start; vector_type out_temp_vec = wrapper::vdup_n(static_cast(0), tag_type()); for(; index_w <= ((in_w_end - num_elems_read_per_iteration)); index_w += num_elems_read_per_iteration, index_wei_w += num_elems_read_per_iteration) { const auto src_vec = wrapper::vloadq(in_ptr_row + index_w * input_stride_w); const auto w_vec = wrapper::vloadq(weights_ptr_row + index_wei_w * kernel_stride_w); out_temp_vec = wrapper::vmla(out_temp_vec, w_vec, src_vec); } out_temp += vreduce(out_temp_vec); for(; index_w < in_w_end; ++index_w, ++index_wei_w) { const auto src_val = *(in_ptr_row + index_w * input_stride_w); const auto w_val = *(weights_ptr_row + index_wei_w * kernel_stride_w); out_temp += src_val * w_val; } } } *(reinterpret_cast(out_ptr)) = out_temp; }, wei); }, out); } void CpuDirectConv2dKernel::configure(ITensorInfo *src, ITensorInfo *weights, ITensorInfo *dst, const PadStrideInfo &conv_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst); _conv_info = conv_info; _data_layout = src->data_layout(); _kernel_size = weights->dimension(get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH)); // Get convolved dimensions TensorShape output_shape = misc::shape_calculator::compute_deep_convolution_shape(*src, *weights, conv_info); DataType data_type = src->data_type(); // Output auto inizialitation if not yet initialized auto_init_if_empty(*dst, output_shape, 1, data_type); // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, weights, dst, conv_info)); // Configure kernel window auto win_config = validate_and_configure_window(src, dst); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); ICpuKernel::configure(win_config.second); } Status CpuDirectConv2dKernel::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *dst, const PadStrideInfo &conv_info) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, weights, dst, conv_info)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(src->clone().get(), dst->clone().get()) .first); return Status{}; } void CpuDirectConv2dKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window); auto src = tensors.get_const_tensor(TensorType::ACL_SRC_0); auto weights = tensors.get_const_tensor(TensorType::ACL_SRC_1); auto dst = tensors.get_tensor(TensorType::ACL_DST); if(_data_layout == DataLayout::NCHW) { switch(src->info()->data_type()) { #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: { convolve_nchw(window, src, weights, dst); break; } #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ case DataType::F32: { convolve_nchw(window, src, weights, dst); break; } default: ARM_COMPUTE_ERROR("Data type not supported"); break; } } else { switch(src->info()->data_type()) { case DataType::F32: { if(have_zero_x_internal_padding(src->info(), weights->info())) { convolve_nhwc_optimized(window, src, weights, dst); } else { convolve_nhwc(window, src, weights, dst); } break; } default: ARM_COMPUTE_ERROR("Data type not supported"); break; } } } const char *CpuDirectConv2dKernel::name() const { return "CpuDirectConvolutionLayerKernel"; } } // namespace kernels } // namespace cpu } // namespace arm_compute