/* * Copyright (c) 2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/cpu/kernels/CpuAddMulAddKernel.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Validate.h" #include "src/core/common/Registrars.h" #include "src/core/CPP/Validate.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include "src/cpu/kernels/addmuladd/list.h" namespace arm_compute { namespace cpu { namespace kernels { namespace { static const std::vector available_kernels = { #ifdef __aarch64__ {"neon_fp32_add_mul_add", [](const DataTypeISASelectorData &data) { return (data.dt == DataType::F32); }, REGISTER_FP32_NEON(arm_compute::cpu::add_mul_add_fp32_neon)}, {"neon_fp16_add_mul_add", [](const DataTypeISASelectorData &data) { return (data.dt == DataType::F16); }, REGISTER_FP16_NEON(arm_compute::cpu::add_mul_add_fp16_neon)}, {"neon_qasymm8_add_mul_add", [](const DataTypeISASelectorData &data) { return (data.dt == DataType::QASYMM8); }, REGISTER_QASYMM8_NEON(arm_compute::cpu::add_mul_add_u8_neon)}, {"neon_qasymm8_signed_add_mul_add", [](const DataTypeISASelectorData &data) { return (data.dt == DataType::QASYMM8_SIGNED); }, REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::add_mul_add_s8_neon)} #endif // __aarch64__ }; Status validate_arguments(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *bn_mul, const ITensorInfo *bn_add, const ITensorInfo *add_output, const ITensorInfo *final_output, ConvertPolicy policy, const ActivationLayerInfo &act_info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, bn_mul, bn_add, final_output); ARM_COMPUTE_RETURN_ERROR_ON_MSG(policy != ConvertPolicy::SATURATE, "Only Saturate Policy is supported"); using ActFunction = ActivationLayerInfo::ActivationFunction; const ActFunction act_func = act_info.activation(); ARM_COMPUTE_RETURN_ERROR_ON_MSG((act_func != ActFunction::BOUNDED_RELU && act_func != ActFunction::RELU && act_func != ActFunction::LU_BOUNDED_RELU && act_func != ActFunction::IDENTITY), "Only RELU Family activations, or no activation, is supported"); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input1); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, input2); if (is_data_type_quantized(input1->data_type())) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bn_mul, 1, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bn_add, 1, DataType::F32); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, bn_mul); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, bn_add); } ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input1, input2); // No broadcasting ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mul, bn_add); ARM_COMPUTE_RETURN_ERROR_ON_MSG(bn_mul->num_dimensions() != 1, "BatchNorm coefficients should be 1D array"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(bn_mul->tensor_shape()[0] != input1->tensor_shape()[0], "First dimensions of inputs and batchNorm coefs should match"); // Validate in case we have add layer's output (intermediate) initialized if (add_output != nullptr && add_output->total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, add_output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input1, add_output); } // Validate in case final output has been initialized if (final_output->total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, final_output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input1, final_output); } const auto uk = CpuAddMulAddKernel::get_implementation( DataTypeISASelectorData{input1->data_type(), CPUInfo::get().get_isa()}); ARM_COMPUTE_RETURN_ERROR_ON(uk == nullptr || uk->ukernel == nullptr); return Status{}; } } // namespace void CpuAddMulAddKernel::configure(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *bn_mul, const ITensorInfo *bn_add, ITensorInfo *add_output, ITensorInfo *final_output, ConvertPolicy policy, const ActivationLayerInfo &act_info) { ARM_COMPUTE_UNUSED(bn_mul, bn_add, input2); ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, bn_add, bn_mul, final_output); ARM_COMPUTE_ERROR_THROW_ON( validate_arguments(input1, input2, bn_mul, bn_add, add_output, final_output, policy, act_info)); const auto uk = CpuAddMulAddKernel::get_implementation( DataTypeISASelectorData{input1->data_type(), CPUInfo::get().get_isa()}); ARM_COMPUTE_ERROR_ON_NULLPTR(uk); ARM_COMPUTE_ERROR_ON(uk->ukernel == nullptr); _policy = policy; _act_info = act_info; _run_method = uk->ukernel; _name = std::string("CpuAddMulAddKernel/").append(uk->name); // Auto initialize outputs if not initialized set_shape_if_empty(*final_output, input1->tensor_shape()); set_data_type_if_unknown(*final_output, input1->data_type()); if (add_output != nullptr) { set_shape_if_empty(*add_output, input1->tensor_shape()); set_data_type_if_unknown(*add_output, input1->data_type()); } // Configure kernel window Window win; win = calculate_max_window(*final_output, Steps()); ICpuKernel::configure(win); } Status CpuAddMulAddKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *bn_mul, const ITensorInfo *bn_add, const ITensorInfo *add_output, const ITensorInfo *final_output, ConvertPolicy policy, const ActivationLayerInfo &act_info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, bn_mul, bn_add, final_output); ARM_COMPUTE_RETURN_ON_ERROR( validate_arguments(input1, input2, bn_mul, bn_add, add_output, final_output, policy, act_info)); return Status{}; } void CpuAddMulAddKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window); ARM_COMPUTE_ERROR_ON(tensors.empty()); ARM_COMPUTE_ERROR_ON(_run_method == nullptr); const ITensor *input1 = tensors.get_const_tensor(TensorType::ACL_SRC_0); const ITensor *input2 = tensors.get_const_tensor(TensorType::ACL_SRC_1); const ITensor *bn_mul = tensors.get_const_tensor(TensorType::ACL_SRC_2); const ITensor *bn_add = tensors.get_const_tensor(TensorType::ACL_SRC_3); ITensor *add_output = tensors.get_tensor(TensorType::ACL_DST_0); ITensor *final_output = tensors.get_tensor(TensorType::ACL_DST_1); _run_method(input1, input2, bn_mul, bn_add, add_output, final_output, _policy, _act_info, window); } const char *CpuAddMulAddKernel::name() const { return _name.c_str(); } const std::vector &CpuAddMulAddKernel::get_available_kernels() { return available_kernels; } } // namespace kernels } // namespace cpu } // namespace arm_compute