/* * Copyright (c) 2021-2022 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/cpu/kernels/CpuAddKernel.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Validate.h" #include "src/core/common/Registrars.h" #include "src/core/CPP/Validate.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include "src/cpu/kernels/add/list.h" #include #if defined(ENABLE_FP32_KERNELS) namespace { static constexpr size_t default_mws_N1_fp32_neon = 24536; static constexpr size_t default_mws_V1_fp32_neon = 40510; } // namespace #endif /* ENABLE_FP32_KERNELS */ namespace arm_compute { namespace cpu { namespace kernels { namespace { static const std::vector available_kernels = { {"neon_qu8_add_fixedpoint", [](const CpuAddKernelDataTypeISASelectorData &data) { return (data.dt == DataType::QASYMM8) && data.can_use_fixedpoint; }, REGISTER_FP32_NEON(arm_compute::cpu::add_q8_neon_fixedpoint)}, {"neon_qs8_add_fixedpoint", [](const CpuAddKernelDataTypeISASelectorData &data) { return (data.dt == DataType::QASYMM8_SIGNED) && data.can_use_fixedpoint; }, REGISTER_FP32_NEON(arm_compute::cpu::add_q8_neon_fixedpoint)}, {"sve2_qu8_add", [](const CpuAddKernelDataTypeISASelectorData &data) { return (data.dt == DataType::QASYMM8) && data.isa.sve2; }, REGISTER_QASYMM8_SVE2(arm_compute::cpu::add_qasymm8_sve2)}, {"sve2_qs8_add", [](const CpuAddKernelDataTypeISASelectorData &data) { return (data.dt == DataType::QASYMM8_SIGNED) && data.isa.sve2; }, REGISTER_QASYMM8_SIGNED_SVE2(arm_compute::cpu::add_qasymm8_signed_sve2)}, {"sve2_qs16_add", [](const CpuAddKernelDataTypeISASelectorData &data) { return (data.dt == DataType::QSYMM16) && data.isa.sve2; }, REGISTER_QSYMM16_SVE2(arm_compute::cpu::add_qsymm16_sve2)}, {"sve_fp32_add", [](const CpuAddKernelDataTypeISASelectorData &data) { return (data.dt == DataType::F32) && data.isa.sve; }, REGISTER_FP32_SVE(arm_compute::cpu::add_fp32_sve)}, {"sve_fp16_add", [](const CpuAddKernelDataTypeISASelectorData &data) { return (data.dt == DataType::F16) && data.isa.sve && data.isa.fp16; }, REGISTER_FP16_SVE(arm_compute::cpu::add_fp16_sve)}, {"sve_u8_add", [](const CpuAddKernelDataTypeISASelectorData &data) { return (data.dt == DataType::U8) && data.isa.sve; }, REGISTER_INTEGER_SVE(arm_compute::cpu::add_u8_sve)}, {"sve_s16_add", [](const CpuAddKernelDataTypeISASelectorData &data) { return (data.dt == DataType::S16) && data.isa.sve; }, REGISTER_INTEGER_SVE(arm_compute::cpu::add_s16_sve)}, {"sve_s32_add", [](const CpuAddKernelDataTypeISASelectorData &data) { return (data.dt == DataType::S32) && data.isa.sve; }, REGISTER_INTEGER_SVE(arm_compute::cpu::add_s32_sve)}, {"neon_fp32_add", [](const CpuAddKernelDataTypeISASelectorData &data) { return (data.dt == DataType::F32); }, REGISTER_FP32_NEON(arm_compute::cpu::add_fp32_neon)}, {"neon_fp16_add", [](const CpuAddKernelDataTypeISASelectorData &data) { return (data.dt == DataType::F16) && data.isa.fp16; }, REGISTER_FP16_NEON(arm_compute::cpu::add_fp16_neon)}, {"neon_u8_add", [](const CpuAddKernelDataTypeISASelectorData &data) { return (data.dt == DataType::U8); }, REGISTER_INTEGER_NEON(arm_compute::cpu::add_u8_neon)}, {"neon_s16_add", [](const CpuAddKernelDataTypeISASelectorData &data) { return (data.dt == DataType::S16); }, REGISTER_INTEGER_NEON(arm_compute::cpu::add_s16_neon)}, {"neon_s32_add", [](const CpuAddKernelDataTypeISASelectorData &data) { return (data.dt == DataType::S32); }, REGISTER_INTEGER_NEON(arm_compute::cpu::add_s32_neon)}, {"neon_qu8_add", [](const CpuAddKernelDataTypeISASelectorData &data) { return (data.dt == DataType::QASYMM8); }, REGISTER_QASYMM8_NEON(arm_compute::cpu::add_qasymm8_neon)}, {"neon_qs8_add", [](const CpuAddKernelDataTypeISASelectorData &data) { return (data.dt == DataType::QASYMM8_SIGNED); }, REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::add_qasymm8_signed_neon)}, {"neon_qs16_add", [](const CpuAddKernelDataTypeISASelectorData &data) { return (data.dt == DataType::QSYMM16); }, REGISTER_QSYMM16_NEON(arm_compute::cpu::add_qsymm16_neon)}}; Status validate_arguments(const ITensorInfo &src0, const ITensorInfo &src1, const ITensorInfo &dst, ConvertPolicy policy) { ARM_COMPUTE_UNUSED(policy); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&src0); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src0, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::QSYMM16, DataType::F16, DataType::S32, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src0, &src1); const TensorShape out_shape = TensorShape::broadcast_shape(src0.tensor_shape(), src1.tensor_shape()); ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible"); ARM_COMPUTE_RETURN_ERROR_ON_MSG( (src0.tensor_shape().x() != src1.tensor_shape().x()) && ((src0.data_type() != src1.data_type()) || (src0.data_type() != dst.data_type()) || (src1.data_type() != dst.data_type())), "Broadcasting across width is supported on configurations where all tensors have the same data type"); // Validate in case of configured dst if (dst.total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src0, &dst); ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, dst.tensor_shape(), 0), "Wrong shape for dst"); } const auto can_use_fixedpoint = add_q8_neon_fixedpoint_possible(&src0, &src1, &dst); const auto uk = CpuAddKernel::get_implementation( CpuAddKernelDataTypeISASelectorData{src0.data_type(), CPUInfo::get().get_isa(), can_use_fixedpoint}); ARM_COMPUTE_RETURN_ERROR_ON(uk == nullptr || uk->ukernel == nullptr); return Status{}; } } // namespace void CpuAddKernel::configure(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst, ConvertPolicy policy) { ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*src0, *src1, *dst, policy)); const auto can_use_fixedpoint = add_q8_neon_fixedpoint_possible(src0, src1, dst); const auto uk = CpuAddKernel::get_implementation( CpuAddKernelDataTypeISASelectorData{src0->data_type(), CPUInfo::get().get_isa(), can_use_fixedpoint}); ARM_COMPUTE_ERROR_ON_NULLPTR(uk); _policy = policy; _run_method = uk->ukernel; _name = std::string("CpuAddKernel").append("/").append(uk->name); // Auto initialize dst if not initialized const TensorShape &out_shape = TensorShape::broadcast_shape(src0->tensor_shape(), src1->tensor_shape()); set_shape_if_empty(*dst, out_shape); set_data_type_if_unknown(*dst, src0->data_type()); // Configure kernel window Window win; std::tie(win, _split_dimension) = calculate_squashed_or_max_window(*src0, *src1); ICpuKernel::configure(win); } Status CpuAddKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst, ConvertPolicy policy) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*src0, *src1, *dst, policy)); return Status{}; } void CpuAddKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window); ARM_COMPUTE_ERROR_ON(tensors.empty()); ARM_COMPUTE_ERROR_ON(_run_method == nullptr); const ITensor *src0 = tensors.get_const_tensor(TensorType::ACL_SRC_0); const ITensor *src1 = tensors.get_const_tensor(TensorType::ACL_SRC_1); ITensor *dst = tensors.get_tensor(TensorType::ACL_DST); _run_method(src0, src1, dst, _policy, window); } const char *CpuAddKernel::name() const { return _name.c_str(); } const std::vector &CpuAddKernel::get_available_kernels() { return available_kernels; } size_t CpuAddKernel::get_mws(const CPUInfo &platform, size_t thread_count) const { ARM_COMPUTE_UNUSED(thread_count); #if defined(ENABLE_FP32_KERNELS) if (this->_run_method == &add_fp32_neon) { size_t mws = ICPPKernel::default_mws; if (platform.get_cpu_model() == CPUModel::N1) { mws = default_mws_N1_fp32_neon; } else if (platform.get_cpu_model() == CPUModel::V1) { mws = default_mws_V1_fp32_neon; } else { return ICPPKernel::default_mws; } // tensor is 1D or was re-interpreted as 1D if (this->window().shape().num_dimensions() == 1) { return mws; } else { // scale mws down by the number of elements along all the dimensions (x, z, w, etc) except the one // that we parallelize along (the y dimension). This allows for parallelization when the Y_SIZE is small // but the other sizes are large, which boosts performance. mws = static_cast(mws / (this->window().num_iterations_total() / this->window().num_iterations(1))); return std::max(static_cast(1), mws); } } #else /* ENABLE_FP32_KERNELS */ ARM_COMPUTE_UNUSED(platform); #endif /* ENABLE_FP32_KERNELS */ return ICPPKernel::default_mws; } } // namespace kernels } // namespace cpu } // namespace arm_compute