/* * Copyright (c) 2017-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "arm_compute/core/Helpers.h" #include "support/ToolchainSupport.h" #include #include #include namespace arm_compute { namespace quantization { constexpr int64_t fixed_point_one_Q0 = (1LL << 31); constexpr float epsilon = 0.00001f; Status calculate_quantized_multiplier(float multiplier, int32_t *quant_multiplier, int32_t *shift, bool ignore_epsilon) { if(multiplier >= 1.f) { Status status = calculate_quantized_multiplier_greater_than_one(multiplier, quant_multiplier, shift); *shift *= -1; return status; } else { return calculate_quantized_multiplier_less_than_one(multiplier, quant_multiplier, shift, ignore_epsilon); } } Status calculate_quantized_multiplier_less_than_one(float multiplier, int32_t *quant_multiplier, int32_t *right_shift, bool ignore_epsilon) { const float internal_epsilon = ignore_epsilon ? 0.0f : epsilon; ARM_COMPUTE_RETURN_ERROR_ON(quant_multiplier == nullptr); ARM_COMPUTE_RETURN_ERROR_ON(right_shift == nullptr); ARM_COMPUTE_RETURN_ERROR_ON(multiplier < -internal_epsilon); ARM_COMPUTE_RETURN_ERROR_ON(multiplier > 1.0f + internal_epsilon); if(std::fabs(0.0f - multiplier) < internal_epsilon) { *quant_multiplier = 0; *right_shift = 0; return Status{}; } int shift_exp = 0; const double q = std::frexp(multiplier, &shift_exp); *right_shift = -1 * shift_exp; auto q_fixed = static_cast(support::cpp11::round(q * fixed_point_one_Q0)); ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > fixed_point_one_Q0); if(q_fixed == fixed_point_one_Q0) { q_fixed /= 2; --*right_shift; } if(ignore_epsilon && *right_shift > 31) { *right_shift = 0; q_fixed = 0; } ARM_COMPUTE_RETURN_ERROR_ON(*right_shift < 0); ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > std::numeric_limits::max()); *quant_multiplier = static_cast(q_fixed); return Status{}; } Status calculate_quantized_multiplier_greater_than_one(float multiplier, int32_t *quantized_multiplier, int32_t *left_shift) { ARM_COMPUTE_RETURN_ERROR_ON(quantized_multiplier == nullptr); ARM_COMPUTE_RETURN_ERROR_ON(left_shift == nullptr); ARM_COMPUTE_RETURN_ERROR_ON(multiplier < 1.f); int shift_exp = 0; const double q = std::frexp(multiplier, &shift_exp); *left_shift = shift_exp; auto q_fixed = static_cast(support::cpp11::round(q * fixed_point_one_Q0)); ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > fixed_point_one_Q0); if(q_fixed == fixed_point_one_Q0) { q_fixed /= 2; ++*left_shift; } ARM_COMPUTE_RETURN_ERROR_ON(*left_shift < 0); ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > std::numeric_limits::max()); *quantized_multiplier = static_cast(q_fixed); return Status{}; } arm_compute::Status calculate_quantized_multipliers(const QuantizationInfo &iq_info, const QuantizationInfo &wq_info, const QuantizationInfo &oq_info, GEMMLowpOutputStageInfo &stage_info) { ARM_COMPUTE_RETURN_ERROR_ON(iq_info.scale().empty()); ARM_COMPUTE_RETURN_ERROR_ON(wq_info.scale().empty()); ARM_COMPUTE_RETURN_ERROR_ON(oq_info.scale().empty()); const unsigned int size = wq_info.scale().size(); auto &quant_multipliers = stage_info.gemmlowp_multipliers; auto &quant_shifts = stage_info.gemmlowp_shifts; quant_multipliers.resize(size); quant_shifts.resize(size); const auto &w_scales = wq_info.scale(); const float i_scale = iq_info.scale().at(0); const float o_scale = oq_info.scale().at(0); for(unsigned int i = 0; i < size; ++i) { const float multiplier = i_scale * w_scales[i] / o_scale; int32_t quant_multiplier = 0; int32_t quant_shift = 0; ARM_COMPUTE_RETURN_ON_ERROR(calculate_quantized_multiplier(multiplier, &quant_multiplier, &quant_shift)); quant_multipliers[i] = quant_multiplier; quant_shifts[i] = quant_shift; } // Legacy part stage_info.gemmlowp_shift = quant_shifts[0]; stage_info.gemmlowp_multiplier = quant_multipliers[0]; return Status{}; } std::pair get_min_max_values_from_quantized_data_type(DataType data_type) { int min_quant_val = 0; int max_quant_val = 0; switch(data_type) { case DataType::QASYMM8: min_quant_val = std::numeric_limits::min(); max_quant_val = std::numeric_limits::max(); break; case DataType::QSYMM8: case DataType::QASYMM8_SIGNED: min_quant_val = std::numeric_limits::min(); max_quant_val = std::numeric_limits::max(); break; case DataType::QASYMM16: min_quant_val = std::numeric_limits::min(); max_quant_val = std::numeric_limits::max(); break; case DataType::QSYMM16: min_quant_val = std::numeric_limits::min(); max_quant_val = std::numeric_limits::max(); break; default: ARM_COMPUTE_ERROR("Unsupported data type"); } return std::make_pair(min_quant_val, max_quant_val); } void compute_quantized_multipliers_and_shifts(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *output, unsigned int idx_ofms, int32_t *output_multipliers_ptr, int32_t *output_shifts_ptr) { const unsigned int num_filters = is_data_type_quantized_per_channel(weights->data_type()) ? weights->dimension(idx_ofms) : 1; const UniformQuantizationInfo iq_info = input->quantization_info().uniform(); const QuantizationInfo wq_info = weights->quantization_info(); const UniformQuantizationInfo oq_info = output->quantization_info().uniform(); for(unsigned int i = 0; i < num_filters; ++i) { int32_t output_multiplier = 0; int32_t output_shift = 0; const float multiplier = iq_info.scale * wq_info.scale()[i] / oq_info.scale; calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift); output_multipliers_ptr[i] = output_multiplier; output_shifts_ptr[i] = output_shift; } } int32_t saturating_rounding_doubling_highmul(int32_t a, int32_t b) { bool overflow = a == b && a == std::numeric_limits::min(); int64_t a_64(a); int64_t b_64(b); int64_t ab_64 = a_64 * b_64; bool is_positive_or_zero = a == 0 || b == 0 || (std::signbit(a) == std::signbit(b)); int32_t nudge = is_positive_or_zero ? (1 << 30) : (1 - (1 << 30)); int32_t ab_x2_high32 = static_cast((ab_64 + nudge) / (1ll << 31)); return overflow ? std::numeric_limits::max() : ab_x2_high32; } inline int32_t rounding_divide_by_pow2(int32_t x, int exponent) { const int32_t mask = (1 << exponent) - 1; const int32_t threshold = (mask >> 1) + (x < 0 ? 1 : 0); return (x >> exponent) + ((x & mask) > threshold ? 1 : 0); } int32_t multiply_by_quantized_multiplier(int32_t input, int32_t qmul, int32_t shift) { const auto left_shift = shift > 0 ? shift : 0; const auto right_shift = shift > 0 ? 0 : -shift; return rounding_divide_by_pow2(saturating_rounding_doubling_highmul(input * (1 << left_shift), qmul), right_shift); } int32_t saturating_rounding_multiply_by_pow2(int32_t exponent, int32_t v) { if(exponent == 0) { return v; } else if(exponent < 0) { return rounding_divide_by_pow2(v, -exponent); } else { constexpr auto min = std::numeric_limits::min(); constexpr auto max = std::numeric_limits::max(); const auto width = sizeof(int32_t) * 8; const int32_t threshold = ((1 << (width - 1 - exponent)) - 1); bool pos_mask = v > threshold; bool neg_mask = v < -threshold; int32_t result = v << exponent; result = pos_mask ? max : result; result = neg_mask ? min : result; return result; } } void get_invsqrt_quantized_multiplier_exp(int32_t input, int32_t reverse_shift, int32_t &output_inv_sqrt, int32_t &output_shift) { ARM_COMPUTE_ERROR_ON(input < 0); if(input <= 1) { // dealing the inputs (0 and 1) separately to avoid overflow output_inv_sqrt = std::numeric_limits::max(); output_shift = 0; return; } // prepare input for fixed point operation and compute shift value output_shift = 11; while(input >= (1 << 29)) { input /= 4; ++output_shift; } const uint32_t max_left_shift_bits = __builtin_clz(static_cast(input)) - 1; const uint32_t max_left_shift_bits_pairs = max_left_shift_bits / 2; const uint32_t left_shift_bit_pairs = max_left_shift_bits_pairs - 1; output_shift -= left_shift_bit_pairs; input <<= 2 * left_shift_bit_pairs; // Calculation in fixed point domain with 3 integer bits. using FixedPointRawType = int32_t; constexpr uint32_t fixedpoint_position = 3; constexpr uint32_t fixedpoint_int_position = sizeof(FixedPointRawType) * 8 - 1 - fixedpoint_position; using FixedPoint3 = FixedPointRawType; using FixedPoint0 = FixedPointRawType; // fixed point representation of input divided by 2 and 1.5 for Newton-Raphson iteration const FixedPoint3 fixedpoint_input = (input >> 1); const FixedPoint3 fixedpoint_half_input = rounding_divide_by_pow2(fixedpoint_input, 1); const FixedPoint3 fixedpoint_half_three = (0x1 << fixedpoint_int_position) + (0x1 << (fixedpoint_int_position - 1)); // initial guess (1) in fixed point representation FixedPoint3 x = 0x1 << fixedpoint_int_position; // multiplication of two fixed point numbers, defined for readability auto fixed_point_mul = [](FixedPointRawType a, FixedPointRawType b) -> FixedPointRawType { return saturating_rounding_doubling_highmul(a, b); }; // rescaling of fixed point to have dst_bit integer bits, defined for readability auto fixed_point_rescale = [](FixedPointRawType a, uint32_t src_bit, uint32_t dst_bit) -> FixedPointRawType { const uint32_t exponent = src_bit - dst_bit; return saturating_rounding_multiply_by_pow2(exponent, a); }; // 5 iterations of Newton-Raphson method for inverse square root - 1.5 * x_n = input/2 * (x_n)^3 constexpr int32_t num_iteration = 5; for(int32_t i = 0; i < num_iteration; ++i) { const auto x3 = fixed_point_rescale(fixed_point_mul(fixed_point_mul(x, x), x), 9, fixedpoint_position); x = fixed_point_rescale(fixed_point_mul(fixedpoint_half_three, x) - fixed_point_mul(fixedpoint_half_input, x3), 6, fixedpoint_position); } // fixed point representation of sqrt(1/2) const FixedPoint0 fixedpoint_half_sqrt_2 = 1518500250; x = fixed_point_mul(fixedpoint_half_sqrt_2, x); output_inv_sqrt = x; if(output_shift < 0) { output_inv_sqrt <<= -output_shift; output_shift = 0; } // convert right shift to left shift output_shift *= reverse_shift; } } // quantization } // arm_compute