/* * Copyright (c) 2019 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/utils/helpers/fft.h" #include namespace arm_compute { namespace helpers { namespace fft { std::vector decompose_stages(unsigned int N, const std::set &supported_factors) { std::vector stages; unsigned int res = N; // Early exit if no supported factors are provided if(supported_factors.empty()) { return stages; } // Create reverse iterator (Start decomposing from the larger supported factors) auto rfactor_it = supported_factors.rbegin(); // Decomposition step while(res != 0) { const unsigned int factor = *rfactor_it; if(0 == (res % factor) && res >= factor) { stages.push_back(factor); res /= factor; } else { ++rfactor_it; if(rfactor_it == supported_factors.rend()) { if(res > 1) { // Couldn't decompose with given factors stages.clear(); return stages; } else { res = 0; } } } } return stages; } std::vector digit_reverse_indices(unsigned int N, const std::vector &fft_stages) { std::vector idx_digit_reverse; // Early exit in case N and fft stages do not match const float stages_prod = std::accumulate(std::begin(fft_stages), std::end(fft_stages), 1, std::multiplies()); if(stages_prod != N) { return idx_digit_reverse; } // Resize digit reverse vector idx_digit_reverse.resize(N); // Get number of radix stages unsigned int n_stages = fft_stages.size(); // Scan elements for(unsigned int n = 0; n < N; ++n) { unsigned int k = n; unsigned int Nx = fft_stages[0]; // Scan stages for(unsigned int s = 1; s < n_stages; ++s) { // radix of stage i-th unsigned int Ny = fft_stages[s]; unsigned int Ni = Ny * Nx; // Update k index k = (k * Ny) % Ni + (k / Nx) % Ny + Ni * (k / Ni); // Update Nx Nx *= Ny; } // K is the index of digit-reverse idx_digit_reverse[n] = k; } return idx_digit_reverse; } } // namespace fft } // namespace helpers } // namespace arm_compute