/* * Copyright (c) 2020-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef SRC_CORE_HELPERS_WINDOWHELPERS_H #define SRC_CORE_HELPERS_WINDOWHELPERS_H #include "arm_compute/core/IAccessWindow.h" #include "arm_compute/core/Steps.h" #include "arm_compute/core/Window.h" namespace arm_compute { /** Update window and padding size for each of the access patterns. * * First the window size is reduced based on all access patterns that are not * allowed to modify the padding of the underlying tensor. Then the padding of * the remaining tensors is increased to match the window. * * @param[in] win Window that is used by the kernel. * @param[in] patterns Access patterns used to calculate the final window and padding. * * @return True if the window has been changed. Changes to the padding do not * influence the returned value. */ template bool update_window_and_padding(Window &win, Ts &&... patterns) { bool window_changed = false; utility::for_each([&](const IAccessWindow & w) { window_changed |= w.update_window_if_needed(win); }, patterns...); bool padding_changed = false; utility::for_each([&](IAccessWindow & w) { padding_changed |= w.update_padding_if_needed(win); }, patterns...); return window_changed; } /** Intersect multiple valid regions. * * @param[in] regions Valid regions. * * @return Intersection of all regions. */ template ValidRegion intersect_valid_regions(const Ts &... regions) { auto intersect = [](const ValidRegion & r1, const ValidRegion & r2) -> ValidRegion { ValidRegion region; for(size_t d = 0; d < std::min(r1.anchor.num_dimensions(), r2.anchor.num_dimensions()); ++d) { region.anchor.set(d, std::max(r1.anchor[d], r2.anchor[d])); } for(size_t d = 0; d < std::min(r1.shape.num_dimensions(), r2.shape.num_dimensions()); ++d) { region.shape.set(d, std::min(r1.shape[d], r2.shape[d])); } return region; }; return utility::foldl(intersect, regions...); } #ifndef DOXYGEN_SKIP_THIS /** Calculate the maximum window for a given tensor shape and border setting * * @param[in] valid_region Valid region object defining the shape of the tensor space for which the window is created. * @param[in] steps (Optional) Number of elements processed for each step. * @param[in] skip_border (Optional) If true exclude the border region from the window. * @param[in] border_size (Optional) Border size. * * @return The maximum window the kernel can be executed on. */ Window calculate_max_window(const ValidRegion &valid_region, const Steps &steps = Steps(), bool skip_border = false, BorderSize border_size = BorderSize()); /** Calculate the maximum window for a given tensor shape and border setting * * @param[in] shape Shape of the tensor space * @param[in] steps (Optional) Number of elements processed for each step. * @param[in] skip_border (Optional) If true exclude the border region from the window. * @param[in] border_size (Optional) Border size. * * @return The maximum window the kernel can be executed on. */ Window calculate_max_window(const TensorShape &shape, const Steps &steps = Steps(), bool skip_border = false, BorderSize border_size = BorderSize()); /** Calculate the maximum window for a given tensor shape and border setting * * @param[in] info Tensor info object defining the shape of the object for which the window is created. * @param[in] steps (Optional) Number of elements processed for each step. * @param[in] skip_border (Optional) If true exclude the border region from the window. * @param[in] border_size (Optional) Border size. * * @return The maximum window the kernel can be executed on. */ inline Window calculate_max_window(const ITensorInfo &info, const Steps &steps = Steps(), bool skip_border = false, BorderSize border_size = BorderSize()) { return calculate_max_window(info.tensor_shape(), steps, skip_border, border_size); } /** Calculate the maximum window used by a horizontal kernel for a given tensor shape and border setting * * @param[in] valid_region Valid region object defining the shape of the tensor space for which the window is created. * @param[in] steps (Optional) Number of elements processed for each step. * @param[in] skip_border (Optional) If true exclude the border region from the window. * @param[in] border_size (Optional) Border size. The border region will be excluded from the window. * * @return The maximum window the kernel can be executed on. */ Window calculate_max_window_horizontal(const ValidRegion &valid_region, const Steps &steps = Steps(), bool skip_border = false, BorderSize border_size = BorderSize()); /** Calculate the maximum window used by a horizontal kernel for a given tensor shape and border setting * * @param[in] info Tensor info object defining the shape of the object for which the window is created. * @param[in] steps (Optional) Number of elements processed for each step. * @param[in] skip_border (Optional) If true exclude the border region from the window. * @param[in] border_size (Optional) Border size. * * @return The maximum window the kernel can be executed on. */ inline Window calculate_max_window_horizontal(const ITensorInfo &info, const Steps &steps = Steps(), bool skip_border = false, BorderSize border_size = BorderSize()) { return calculate_max_window_horizontal(info.valid_region(), steps, skip_border, border_size); } /** Calculate the maximum window for a given tensor shape and border setting. The window will also includes the border. * * @param[in] valid_region Valid region object defining the shape of the tensor space for which the window is created. * @param[in] steps (Optional) Number of elements processed for each step. * @param[in] border_size (Optional) Border size. The border region will be included in the window. * * @return The maximum window the kernel can be executed on. */ Window calculate_max_enlarged_window(const ValidRegion &valid_region, const Steps &steps = Steps(), BorderSize border_size = BorderSize()); /** Calculate the maximum window for a given tensor shape and border setting. The window will also includes the border. * * @param[in] info Tensor info object defining the shape of the object for which the window is created. * @param[in] steps (Optional) Number of elements processed for each step. * @param[in] border_size (Optional) Border size. The border region will be included in the window. * * @return The maximum window the kernel can be executed on. */ inline Window calculate_max_enlarged_window(const ITensorInfo &info, const Steps &steps = Steps(), BorderSize border_size = BorderSize()) { return calculate_max_enlarged_window(info.valid_region(), steps, border_size); } /** Function to compute the shape of output and window for the given inputs * * @param[in] infos Input tensor informations * * @return A pair of the shape and window */ template std::pair compute_output_shape_and_window(const Shapes &... shapes) { const TensorShape out_shape = TensorShape::broadcast_shape(shapes...); return std::make_pair(out_shape, calculate_max_window(out_shape)); } #endif /* DOXYGEN_SKIP_THIS */ } // namespace arm_compute #endif /* SRC_CORE_HELPERS_WINDOWHELPERS_H */