/* * Copyright (c) 2020-2022 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/core/helpers/WindowHelpers.h" namespace arm_compute { Window calculate_max_window(const ValidRegion &valid_region, const Steps &steps, bool skip_border, BorderSize border_size) { if (!skip_border) { border_size = BorderSize(0); } const Coordinates &anchor = valid_region.anchor; const TensorShape &shape = valid_region.shape; Window window; window.set(0, Window::Dimension( // Skip the border left of the image anchor[0] + border_size.left, // Skip the border right of the image // Make sure the window width is a multiple of the step size anchor[0] + border_size.left + ceil_to_multiple(std::max(0, static_cast(shape[0]) - static_cast(border_size.left) - static_cast(border_size.right)), steps[0]), steps[0])); size_t n = 1; if (anchor.num_dimensions() > 1) { window.set(1, Window::Dimension( // Skip the border above the image anchor[1] + border_size.top, // Skip the border below the image anchor[1] + border_size.top + ceil_to_multiple(std::max(0, static_cast(shape[1]) - static_cast(border_size.top) - static_cast(border_size.bottom)), steps[1]), steps[1])); ++n; } if (anchor.num_dimensions() > 2) { window.set(2, Window::Dimension(anchor[2], std::max(1, shape[2]), steps[2])); ++n; } for (; n < anchor.num_dimensions(); ++n) { window.set(n, Window::Dimension(anchor[n], std::max(1, shape[n]))); } for (; n < Coordinates::num_max_dimensions; ++n) { window.set(n, Window::Dimension(0, 1)); } return window; } Window calculate_max_window(const TensorShape &shape, const Steps &steps, bool skip_border, BorderSize border_size) { if (!skip_border) { border_size = BorderSize(0); } Window window; window.set(0, Window::Dimension( // Skip the border left of the image border_size.left, // Skip the border right of the image // Make sure the window width is a multiple of the step size border_size.left + ceil_to_multiple(std::max(0, static_cast(shape[0]) - static_cast(border_size.left) - static_cast(border_size.right)), steps[0]), steps[0])); size_t n = 1; if (shape.num_dimensions() > 1) { window.set(1, Window::Dimension( // Skip the border above the image border_size.top, // Skip the border below the image border_size.top + ceil_to_multiple(std::max(0, static_cast(shape[1]) - static_cast(border_size.top) - static_cast(border_size.bottom)), steps[1]), steps[1])); ++n; } if (shape.num_dimensions() > 2) { window.set(2, Window::Dimension(0, std::max(1, shape[2]), steps[2])); ++n; } for (; n < shape.num_dimensions(); ++n) { window.set(n, Window::Dimension(0, std::max(1, shape[n]))); } for (; n < Coordinates::num_max_dimensions; ++n) { window.set(n, Window::Dimension(0, 1)); } return window; } Window calculate_max_enlarged_window(const ValidRegion &valid_region, const Steps &steps, BorderSize border_size) { const Coordinates &anchor = valid_region.anchor; const TensorShape &shape = valid_region.shape; Window window; window.set(0, Window::Dimension( // move the anchor to the start from the border anchor[0] - border_size.left, // move the anchor to include the right end border // Make sure the window width is a multiple of the step size anchor[0] - border_size.left + ceil_to_multiple(shape[0] + border_size.left + border_size.right, steps[0]), steps[0])); size_t n = 1; if (anchor.num_dimensions() > 1) { window.set(1, Window::Dimension( // Include the border above the image anchor[1] - border_size.top, // Include the border below the image anchor[1] - border_size.top + ceil_to_multiple(shape[1] + border_size.top + border_size.bottom, steps[1]), steps[1])); ++n; } if (anchor.num_dimensions() > 2) { window.set(2, Window::Dimension(0, std::max(1, shape[n]), steps[2])); ++n; } for (; n < anchor.num_dimensions(); ++n) { window.set(n, Window::Dimension(anchor[n], std::max(1, shape[n]))); } for (; n < Coordinates::num_max_dimensions; ++n) { window.set(n, Window::Dimension(0, 1)); } return window; } Window calculate_max_window_horizontal(const ValidRegion &valid_region, const Steps &steps, bool skip_border, BorderSize border_size) { if (skip_border) { border_size.top = 0; border_size.bottom = 0; } else { border_size.left = 0; border_size.right = 0; } const Coordinates &anchor = valid_region.anchor; const TensorShape &shape = valid_region.shape; Window window; window.set(0, Window::Dimension( // Skip the border left of the image anchor[0] + border_size.left, // Skip the border right of the image // Make sure the window width is a multiple of the step size anchor[0] + border_size.left + ceil_to_multiple(std::max(0, static_cast(shape[0]) - static_cast(border_size.left) - static_cast(border_size.right)), steps[0]), steps[0])); size_t n = 1; if (anchor.num_dimensions() > 1) { window.set(1, Window::Dimension( // Skip the border above the image anchor[1] - border_size.top, // Skip the border below the image anchor[1] + shape[1] + border_size.bottom, 1)); ++n; } for (; n < anchor.num_dimensions(); ++n) { window.set(n, Window::Dimension(anchor[n], std::max(1, shape[n]))); } for (; n < Coordinates::num_max_dimensions; ++n) { window.set(n, Window::Dimension(0, 1)); } return window; } std::pair calculate_squashed_or_max_window(const ITensorInfo &src0, const ITensorInfo &src1) { const auto &shape0 = src0.tensor_shape(); const auto &shape1 = src1.tensor_shape(); const auto &strides0 = src0.strides_in_bytes(); const auto &strides1 = src1.strides_in_bytes(); const auto num_dimensions = std::max(src0.num_dimensions(), src1.num_dimensions()); Window win; size_t split_dimension = Window::DimY; size_t dim = 0; size_t squashed_bytes = src0.element_size(); // Try to squash the low dimensions together. for (; dim < num_dimensions; ++dim) { if (shape0[dim] != shape1[dim] || strides0[dim] != squashed_bytes || strides1[dim] != squashed_bytes) { break; } squashed_bytes *= shape0[dim]; } if (dim == num_dimensions) { auto squashed_elements = squashed_bytes / src0.element_size(); split_dimension = Window::DimX; // The input tensors can be interpreted as 1D array. win.set(0, Window::Dimension(0, squashed_elements, 1)); for (dim = 1; dim < Coordinates::num_max_dimensions; ++dim) { win.set(dim, Window::Dimension(0, 1, 1)); } } else { // Generates the max window. for (dim = 0; dim < Coordinates::num_max_dimensions; ++dim) { win.set(dim, Window::Dimension(0, std::max(shape0[dim], shape1[dim]), 1)); } } return std::make_pair(win, split_dimension); } std::pair calculate_squashed_or_max_window(const ITensorInfo &src) { const auto &shape = src.tensor_shape(); const auto &strides = src.strides_in_bytes(); const auto num_dimensions = src.num_dimensions(); Window win; size_t split_dimension = Window::DimY; size_t dim = 0; size_t squashed_bytes = src.element_size(); // Try to squash the low dimensions together. for (; dim < num_dimensions; ++dim) { if (strides[dim] != squashed_bytes) { break; } squashed_bytes *= shape[dim]; } if (dim == num_dimensions) { const auto squashed_elements = squashed_bytes / src.element_size(); split_dimension = Window::DimX; // The input tensor can be interpreted as 1D array. win.set(0, Window::Dimension(0, squashed_elements, 1)); for (dim = 1; dim < Coordinates::num_max_dimensions; ++dim) { win.set(dim, Window::Dimension(0, 1, 1)); } } else { // Generate the max window. for (dim = 0; dim < Coordinates::num_max_dimensions; ++dim) { win.set(dim, Window::Dimension(0, shape[dim], 1)); } } return std::make_pair(win, split_dimension); } } // namespace arm_compute