/* * Copyright (c) 2020-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef SRC_CORE_HELPERS_SCALEHELPERS_H #define SRC_CORE_HELPERS_SCALEHELPERS_H #include "arm_compute/core/Error.h" #include "arm_compute/core/QuantizationInfo.h" #include #include #include #include namespace arm_compute { namespace scale_helpers { /** Computes bilinear interpolation for quantized input and output, using the pointer to the top-left pixel and the pixel's distance between * the real coordinates and the smallest following integer coordinates. Input must be QASYMM8 and in single channel format. * * @param[in] pixel_ptr Pointer to the top-left pixel value of a single channel input. * @param[in] stride Stride to access the bottom-left and bottom-right pixel values * @param[in] dx Pixel's distance between the X real coordinate and the smallest X following integer * @param[in] dy Pixel's distance between the Y real coordinate and the smallest Y following integer * @param[in] iq_info Input QuantizationInfo * @param[in] oq_info Output QuantizationInfo * * @note dx and dy must be in the range [0, 1.0] * * @return The bilinear interpolated pixel value */ inline uint8_t delta_bilinear_c1_quantized(const uint8_t *pixel_ptr, size_t stride, float dx, float dy, UniformQuantizationInfo iq_info, UniformQuantizationInfo oq_info) { ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr); const float dx1 = 1.0f - dx; const float dy1 = 1.0f - dy; const float a00 = dequantize_qasymm8(*pixel_ptr, iq_info); const float a01 = dequantize_qasymm8(*(pixel_ptr + 1), iq_info); const float a10 = dequantize_qasymm8(*(pixel_ptr + stride), iq_info); const float a11 = dequantize_qasymm8(*(pixel_ptr + stride + 1), iq_info); const float w1 = dx1 * dy1; const float w2 = dx * dy1; const float w3 = dx1 * dy; const float w4 = dx * dy; float res = a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4; return static_cast(quantize_qasymm8(res, oq_info)); } /** Computes bilinear interpolation for quantized input and output, using the pointer to the top-left pixel and the pixel's distance between * the real coordinates and the smallest following integer coordinates. Input must be QASYMM8_SIGNED and in single channel format. * * @param[in] pixel_ptr Pointer to the top-left pixel value of a single channel input. * @param[in] stride Stride to access the bottom-left and bottom-right pixel values * @param[in] dx Pixel's distance between the X real coordinate and the smallest X following integer * @param[in] dy Pixel's distance between the Y real coordinate and the smallest Y following integer * @param[in] iq_info Input QuantizationInfo * @param[in] oq_info Output QuantizationInfo * * @note dx and dy must be in the range [0, 1.0] * * @return The bilinear interpolated pixel value */ inline int8_t delta_bilinear_c1_quantized(const int8_t *pixel_ptr, size_t stride, float dx, float dy, UniformQuantizationInfo iq_info, UniformQuantizationInfo oq_info) { ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr); const float dx1 = 1.0f - dx; const float dy1 = 1.0f - dy; const float a00 = dequantize_qasymm8_signed(*pixel_ptr, iq_info); const float a01 = dequantize_qasymm8_signed(*(pixel_ptr + 1), iq_info); const float a10 = dequantize_qasymm8_signed(*(pixel_ptr + stride), iq_info); const float a11 = dequantize_qasymm8_signed(*(pixel_ptr + stride + 1), iq_info); const float w1 = dx1 * dy1; const float w2 = dx * dy1; const float w3 = dx1 * dy; const float w4 = dx * dy; float res = a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4; return static_cast(quantize_qasymm8_signed(res, oq_info)); } /** Return the pixel at (x,y) using area interpolation by clamping when out of borders. The image must be single channel U8 * * @note The interpolation area depends on the width and height ration of the input and output images * @note Currently average of the contributing pixels is calculated * * @param[in] first_pixel_ptr Pointer to the first pixel of a single channel U8 image. * @param[in] stride Stride in bytes of the image * @param[in] width Width of the image * @param[in] height Height of the image * @param[in] wr Width ratio among the input image width and output image width. * @param[in] hr Height ratio among the input image height and output image height. * @param[in] x X position of the wanted pixel * @param[in] y Y position of the wanted pixel * * @return The pixel at (x, y) using area interpolation. */ inline uint8_t pixel_area_c1u8_clamp(const uint8_t *first_pixel_ptr, size_t stride, size_t width, size_t height, float wr, float hr, int x, int y) { ARM_COMPUTE_ERROR_ON(first_pixel_ptr == nullptr); // Calculate sampling position float in_x = (x + 0.5f) * wr - 0.5f; float in_y = (y + 0.5f) * hr - 0.5f; // Get bounding box offsets int x_from = std::floor(x * wr - 0.5f - in_x); int y_from = std::floor(y * hr - 0.5f - in_y); int x_to = std::ceil((x + 1) * wr - 0.5f - in_x); int y_to = std::ceil((y + 1) * hr - 0.5f - in_y); // Clamp position to borders in_x = std::max(-1.f, std::min(in_x, static_cast(width))); in_y = std::max(-1.f, std::min(in_y, static_cast(height))); // Clamp bounding box offsets to borders x_from = ((in_x + x_from) < -1) ? -1 : x_from; y_from = ((in_y + y_from) < -1) ? -1 : y_from; x_to = ((in_x + x_to) > width) ? (width - in_x) : x_to; y_to = ((in_y + y_to) > height) ? (height - in_y) : y_to; // Get pixel index const int xi = std::floor(in_x); const int yi = std::floor(in_y); // Bounding box elements in each dimension const int x_elements = (x_to - x_from + 1); const int y_elements = (y_to - y_from + 1); ARM_COMPUTE_ERROR_ON(x_elements == 0 || y_elements == 0); // Sum pixels in area int sum = 0; for(int j = yi + y_from, je = yi + y_to; j <= je; ++j) { const uint8_t *ptr = first_pixel_ptr + j * stride + xi + x_from; sum = std::accumulate(ptr, ptr + x_elements, sum); } // Return average return sum / (x_elements * y_elements); } /** Computes bilinear interpolation using the top-left, top-right, bottom-left, bottom-right pixels and the pixel's distance between * the real coordinates and the smallest following integer coordinates. * * @param[in] a00 The top-left pixel value. * @param[in] a01 The top-right pixel value. * @param[in] a10 The bottom-left pixel value. * @param[in] a11 The bottom-right pixel value. * @param[in] dx_val Pixel's distance between the X real coordinate and the smallest X following integer * @param[in] dy_val Pixel's distance between the Y real coordinate and the smallest Y following integer * * @note dx and dy must be in the range [0, 1.0] * * @return The bilinear interpolated pixel value */ inline float delta_bilinear(float a00, float a01, float a10, float a11, float dx_val, float dy_val) { const float dx1_val = 1.0f - dx_val; const float dy1_val = 1.0f - dy_val; const float w1 = dx1_val * dy1_val; const float w2 = dx_val * dy1_val; const float w3 = dx1_val * dy_val; const float w4 = dx_val * dy_val; return a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4; } } // namespace scale_helpers } // namespace arm_compute #endif /* SRC_CORE_HELPERS_SCALEHELPERS_H */