/* * Copyright (c) 2017-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/core/gpu/cl/kernels/ClPoolingKernel.h" #include "arm_compute/core/CL/CLHelpers.h" #include "arm_compute/core/CL/CLKernelLibrary.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "src/core/CL/CLValidate.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include "support/Cast.h" #include "support/StringSupport.h" namespace arm_compute { namespace opencl { namespace kernels { using namespace arm_compute::misc::shape_calculator; namespace { // Internal window config info using ClPoolingConfig = std::pair; //num_elems_processed_per_iteration, border_size void auto_init(const ITensorInfo *src, ITensorInfo *dst, ITensorInfo *indices, PoolingLayerInfo pool_info) { TensorShape out_shape = compute_pool_shape(*src, pool_info); auto_init_if_empty(*dst, src->clone()->set_tensor_shape(out_shape)); if(indices) { auto_init_if_empty(*indices, src->clone()->set_tensor_shape(out_shape).set_data_type(DataType::U32)); } } Status validate_arguments(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &pool_info, const ITensorInfo *indices) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst); ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(src); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MSG((is_data_type_quantized_asymmetric(src->data_type()) && pool_info.pool_type == PoolingType::L2), "Unsupported combination of parameters!"); // Check indices if(indices) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MSG(pool_info.pool_type != PoolingType::MAX, "Pooling indices only supported for MAX pooling method"); ARM_COMPUTE_RETURN_ERROR_ON_MSG((pool_info.pool_size != Size2D(2, 2)), "Pooling indices only supported for pool size 2x2"); if(indices->total_size() != 0) { TensorInfo idx_info(TensorInfo(compute_pool_shape(*src, pool_info), 1, DataType::U32)); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(indices, &idx_info); } } // Checks performed when dst is configured if(dst->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(src, dst); TensorInfo out_info(TensorInfo(compute_pool_shape(*src, pool_info), 1, dst->data_type())); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(dst, &out_info); } return Status{}; } std::tuple validate_and_configure_window(ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &pool_info, ITensorInfo *indices = nullptr) { ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst); // Get data layout const DataLayout data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : pool_info.data_layout; const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); int pool_stride_x = 0; int pool_stride_y = 0; unsigned int pooled_w = 0; unsigned int pooled_h = 0; int pool_size_x = pool_info.is_global_pooling ? src->dimension(idx_width) : pool_info.pool_size.width; int pool_size_y = pool_info.is_global_pooling ? src->dimension(idx_height) : pool_info.pool_size.height; const PadStrideInfo pad_stride_info = pool_info.pad_stride_info; std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride(); const int pool_pad_right = pad_stride_info.pad_right(); const int pool_pad_top = pad_stride_info.pad_top(); const int pool_pad_left = pad_stride_info.pad_left(); const int pool_pad_bottom = pad_stride_info.pad_bottom(); BorderSize border_size = BorderSize(); auto_init(src, dst, indices, pool_info); pooled_w = dst->tensor_shape()[idx_width]; pooled_h = dst->tensor_shape()[idx_height]; const DataType data_type = src->data_type(); const int src_width = src->dimension(idx_width); const int src_height = src->dimension(idx_height); unsigned int num_elems_processed_per_iteration = 0; bool window_changed = false; Window win{}; switch(data_layout) { case DataLayout::NCHW: { // Initialize border size border_size = BorderSize(pool_pad_top, pool_pad_right, pool_pad_bottom, pool_pad_left); // Change the number of elements processed per iteration // for pooling 3x3 with stride less equal than 3 const bool can_optimize = (pool_size_x == 3) && (pool_size_y == 3) && (pool_stride_x <= 3) && !is_data_type_quantized(data_type); num_elems_processed_per_iteration = can_optimize ? 4 : 1; const unsigned int num_elems_read_per_iteration = (num_elems_processed_per_iteration - 1) * pool_stride_x + pool_size_x; // Number of iterations in X dimension const int num_iterations_x = (pooled_w + num_elems_processed_per_iteration - 1) / num_elems_processed_per_iteration; // Upper limit for the number of right/bottom border elements that are accessed const int upper_bound_w = ((num_iterations_x - 1) * num_elems_processed_per_iteration * pool_stride_x - pool_pad_left + num_elems_read_per_iteration) - src_width; const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_top + pool_size_y) - src_height; border_size.right = std::max(upper_bound_w, pool_pad_right); border_size.bottom = std::max(upper_bound_h, pool_pad_bottom); win = calculate_max_window(*dst, Steps(num_elems_processed_per_iteration)); AccessWindowRectangle src_access(src, -pool_pad_left, -pool_pad_top, num_elems_read_per_iteration, pool_size_y, pool_stride_x, pool_stride_y); AccessWindowHorizontal dst_access(dst, 0, num_elems_processed_per_iteration); // Update indices window if(indices) { AccessWindowHorizontal indices_access(indices, 0, num_elems_processed_per_iteration); window_changed = update_window_and_padding(win, src_access, dst_access, indices_access); indices_access.set_valid_region(win, ValidRegion(Coordinates(), indices->tensor_shape())); } else { window_changed = update_window_and_padding(win, src_access, dst_access); } dst_access.set_valid_region(win, ValidRegion(Coordinates(), dst->tensor_shape())); break; } case DataLayout::NHWC: { // Initialize border size border_size = BorderSize(); num_elems_processed_per_iteration = adjust_vec_size(4, dst->dimension(0)); win = calculate_max_window(*dst, Steps(num_elems_processed_per_iteration)); if(indices != nullptr) { indices->set_valid_region(ValidRegion(Coordinates(), indices->tensor_shape())); } dst->set_valid_region(ValidRegion(Coordinates(), dst->tensor_shape())); break; } default: ARM_COMPUTE_ERROR("Not implemented"); } Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_tuple(err, win, ClPoolingConfig(num_elems_processed_per_iteration, border_size)); } } // namespace ClPoolingKernel::ClPoolingKernel() : _pool_info(), _data_layout(DataLayout::UNKNOWN), _border_size(0), _num_elems_processed_per_iteration(1) { } BorderSize ClPoolingKernel::border_size() const { return _border_size; } void ClPoolingKernel::configure(const ClCompileContext &compile_context, ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &pool_info, ITensorInfo *indices) { ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst); auto padding_info = get_padding_info({ src, dst, indices }); // Set instance variables _pool_info = pool_info; _data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : pool_info.data_layout; int pool_stride_x = 0; int pool_stride_y = 0; const PoolingType pool_type = pool_info.pool_type; const int idx_width = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT); const int idx_channel = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::CHANNEL); const int idx_batch_size = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::BATCHES); const int pool_size_x = pool_info.is_global_pooling ? src->dimension(idx_width) : pool_info.pool_size.width; const int pool_size_y = pool_info.is_global_pooling ? src->dimension(idx_height) : pool_info.pool_size.height; const PadStrideInfo pad_stride_info = pool_info.pad_stride_info; const bool exclude_padding = pool_info.exclude_padding; std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride(); const int pool_pad_top = pad_stride_info.pad_top(); const int pool_pad_left = pad_stride_info.pad_left(); // Set build options CLBuildOptions build_opts; const DataType data_type = src->data_type(); // Configure kernel window auto win_config = validate_and_configure_window(src, dst, pool_info, indices); ARM_COMPUTE_ERROR_THROW_ON(std::get<0>(win_config)); ICLKernel::configure_internal(std::get<1>(win_config)); ClPoolingConfig pooling_config = std::get<2>(win_config); _num_elems_processed_per_iteration = pooling_config.first; _border_size = pooling_config.second; build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(_num_elems_processed_per_iteration)); // Tensor paddings are used to calculate the indicies for MAX pooling if(pool_info.pool_size == Size2D(2, 2) && pool_type == PoolingType::MAX && indices && is_data_type_float(data_type)) { build_opts.add_option("-DPAD_TENSOR_LEFT=" + support::cpp11::to_string(src->padding().left)); build_opts.add_option("-DPAD_TENSOR_RIGHT=" + support::cpp11::to_string(src->padding().right)); build_opts.add_option("-DPAD_TENSOR_TOP=" + support::cpp11::to_string(src->padding().top)); build_opts.add_option("-DPAD_TENSOR_BOTTOM=" + support::cpp11::to_string(src->padding().bottom)); build_opts.add_option("-DTENSOR_CHANNEL=" + support::cpp11::to_string(src->dimension(idx_channel))); build_opts.add_option("-DTENSOR_WIDTH=" + support::cpp11::to_string(src->dimension(idx_width))); build_opts.add_option("-DTENSOR_HEIGHT=" + support::cpp11::to_string(src->dimension(idx_height))); } if(is_data_type_quantized_asymmetric(data_type) && src->quantization_info() != dst->quantization_info()) { const UniformQuantizationInfo iq_info = src->quantization_info().uniform(); const UniformQuantizationInfo oq_info = dst->quantization_info().uniform(); build_opts.add_option("-DOFFSET_IN1=" + float_to_string_with_full_precision(iq_info.offset)); build_opts.add_option("-DOFFSET_OUT=" + float_to_string_with_full_precision(oq_info.offset)); build_opts.add_option("-DSCALE_IN1=" + float_to_string_with_full_precision(iq_info.scale)); build_opts.add_option("-DSCALE_OUT=" + float_to_string_with_full_precision(oq_info.scale)); } // Check dst dimensions auto_init(src, dst, indices, pool_info); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, dst, pool_info, indices)); build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(data_type)); build_opts.add_option("-DPOOL_" + string_from_pooling_type(pool_type)); build_opts.add_option("-DSTRIDE_X=" + support::cpp11::to_string(pool_stride_x)); build_opts.add_option("-DSTRIDE_Y=" + support::cpp11::to_string(pool_stride_y)); build_opts.add_option("-DPAD_X=" + support::cpp11::to_string(pool_pad_left)); build_opts.add_option("-DPAD_Y=" + support::cpp11::to_string(pool_pad_top)); build_opts.add_option("-DPOOL_SIZE_X=" + support::cpp11::to_string(pool_size_x)); build_opts.add_option("-DPOOL_SIZE_Y=" + support::cpp11::to_string(pool_size_y)); // Set the initial value for the pooling operation accordingly with the data type if(pool_type == PoolingType::MAX) { if(is_data_type_quantized(data_type)) { PixelValue type_min{}; std::tie(type_min, std::ignore) = get_min_max(data_type); build_opts.add_option("-DINITIAL_VALUE=" + support::cpp11::to_string(type_min.get())); } else { build_opts.add_option("-DINITIAL_VALUE=" + float_to_string_with_full_precision(std::numeric_limits::lowest())); } } else { // Pool AVG and Pool L2 initial value build_opts.add_option("-DINITIAL_VALUE=0"); } build_opts.add_option("-DMAX_WIDTH=" + support::cpp11::to_string(src->dimension(idx_width) + (exclude_padding ? 0 : pool_pad_left))); build_opts.add_option("-DMAX_HEIGHT=" + support::cpp11::to_string(src->dimension(idx_height) + (exclude_padding ? 0 : pool_pad_top))); // Create kernel switch(_data_layout) { case DataLayout::NCHW: { const auto use_fp_mixed_precision = (data_type == DataType::F16) && pool_info.fp_mixed_precision; const auto use_wider_accumulator = use_fp_mixed_precision && (pool_type != PoolingType::MAX); const auto acc_data_type = get_cl_type_from_data_type(use_wider_accumulator ? DataType::F32 : data_type); build_opts.add_option("-DACC_DATA_TYPE=" + acc_data_type); build_opts.add_option_if(use_wider_accumulator, "-DFP_MIXED_PRECISION"); if(pool_type != PoolingType::MAX) { build_opts.add_option_if(exclude_padding, "-DEXCLUDE_PADDING"); } if((pool_size_x == 3) && (pool_size_y == 3) && !is_data_type_quantized_asymmetric(data_type)) { // Check if we have pool3x3 with stride_x less equal than 3. In these cases, run an optimized OpenCL kernel where // each thread computes 4 dst elements const bool is_pool3x3_stride_le3 = (pool_size_x == 3) && (pool_size_y == 3) && (pool_stride_x <= 3); std::string kernel_name = ((is_pool3x3_stride_le3) ? "pooling_layer_optimized_" : "pooling_layer_") + support::cpp11::to_string(pool_size_x); _kernel = create_kernel(compile_context, kernel_name, build_opts.options()); } else if(pool_info.pool_size == Size2D(2, 2) && pool_type == PoolingType::MAX && indices && is_data_type_float(data_type)) { // For max pooling with pool2x2, store indicies which will be used in max unpooling if(data_type == DataType::F32) { std::string kernel_name = "pooling_layer_2_nchw_indices_fp32"; _kernel = create_kernel(compile_context, kernel_name, build_opts.options()); } else if(data_type == DataType::F16) { std::string kernel_name = "pooling_layer_2_nchw_indices_fp16"; _kernel = create_kernel(compile_context, kernel_name, build_opts.options()); } } else // Run general case { std::string kernel_name = is_data_type_quantized_asymmetric(data_type) ? "pooling_layer_MxN_quantized_nchw" : "pooling_layer_MxN_nchw"; _kernel = create_kernel(compile_context, kernel_name, build_opts.options()); } break; } case DataLayout::NHWC: { // Floating point mixed precision is support on F16 only const auto use_fp_mixed_precision = (data_type == DataType::F16) && pool_info.fp_mixed_precision && pool_type != PoolingType::MAX; // Wider accumulation is required to avoid accuracy loss // Case 1: Floating point mixed precision (fp16 src data and fp32 accumulation) // Cast 2: Quantized (int8/uint8 src data and int32 accumulation ) DataType acc_data_type = data_type; if(use_fp_mixed_precision) { acc_data_type = DataType::F32; } else if(is_data_type_quantized(data_type) && pool_type != PoolingType::MAX) { acc_data_type = DataType::S32; } build_opts.add_option("-DACC_DATA_TYPE=" + get_cl_type_from_data_type(acc_data_type)); build_opts.add_option_if(use_fp_mixed_precision, "-DFP_MIXED_PRECISION"); build_opts.add_option_if(exclude_padding, "-DEXCLUDE_PADDING"); build_opts.add_option("-DSRC_WIDTH=" + support::cpp11::to_string(src->dimension(idx_width))); build_opts.add_option("-DSRC_HEIGHT=" + support::cpp11::to_string(src->dimension(idx_height))); build_opts.add_option("-DDST_HEIGHT=" + support::cpp11::to_string(dst->dimension(idx_height))); build_opts.add_option("-DDST_CHANNELS=" + support::cpp11::to_string(dst->dimension(idx_channel))); build_opts.add_option("-DDST_BATCH_SIZE=" + support::cpp11::to_string(dst->dimension(idx_batch_size))); build_opts.add_option("-DVEC_SIZE_LEFTOVER=" + support::cpp11::to_string(src->dimension(0) % _num_elems_processed_per_iteration)); if(pool_info.pool_size == Size2D(2, 2) && is_data_type_float(data_type)) { build_opts.add_option_if(indices != nullptr && pool_type == PoolingType::MAX, "-DEXTRACT_MAX_INDEX"); std::string kernel_name = "pooling_layer_2x2_nhwc"; _kernel = create_kernel(compile_context, kernel_name, build_opts.options()); } else { std::string kernel_name = is_data_type_quantized_asymmetric(data_type) ? "pooling_layer_MxN_quantized_nhwc" : "pooling_layer_MxN_nhwc"; _kernel = create_kernel(compile_context, kernel_name, build_opts.options()); } break; } default: ARM_COMPUTE_ERROR("Not implemented"); } // Set config_id for enabling LWS tuning _config_id = "pooling_layer_"; _config_id += lower_string(string_from_data_type(data_type)); _config_id += "_"; _config_id += lower_string(string_from_data_layout(_data_layout)); _config_id += "_"; _config_id += support::cpp11::to_string(dst->dimension(idx_width)); _config_id += "_"; _config_id += support::cpp11::to_string(dst->dimension(idx_height)); _config_id += "_"; _config_id += support::cpp11::to_string(dst->dimension(idx_channel)); _config_id += "_"; _config_id += lower_string(string_from_data_layout(src->data_layout())); ARM_COMPUTE_ERROR_ON(src->data_layout() == DataLayout::NHWC && has_padding_changed(padding_info)); } Status ClPoolingKernel::validate(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &pool_info, const ITensorInfo *indices) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, dst, pool_info, indices)); ARM_COMPUTE_RETURN_ON_ERROR(std::get<0>(validate_and_configure_window(src->clone().get(), dst->clone().get(), pool_info))); return Status{}; } void ClPoolingKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window); unsigned int pool_stride_x = 0; unsigned int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride(); const auto src = utils::cast::polymorphic_downcast(tensors.get_const_tensor(TensorType::ACL_SRC)); auto dst = utils::cast::polymorphic_downcast(tensors.get_tensor(TensorType::ACL_DST_0)); auto indices = utils::cast::polymorphic_downcast(tensors.get_tensor(TensorType::ACL_DST_1)); // Collapse window Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ); switch(_data_layout) { case DataLayout::NCHW: { Window slice = window_collapsed.first_slice_window_3D(); do { // Upsample src by pool size Window in_slice(slice); in_slice.set(Window::DimX, Window::Dimension(in_slice.x().start() - _pool_info.pad_stride_info.pad_left(), (in_slice.x().end() - _pool_info.pad_stride_info.pad_left()) * pool_stride_x, pool_stride_x * _num_elems_processed_per_iteration)); in_slice.set(Window::DimY, Window::Dimension(in_slice.y().start() - _pool_info.pad_stride_info.pad_top(), (in_slice.y().end() - _pool_info.pad_stride_info.pad_top()) * pool_stride_y, pool_stride_y)); // Set srcs unsigned int idx = 0; add_3D_tensor_argument(idx, src, in_slice); add_3D_tensor_argument(idx, dst, slice); if(indices && is_data_type_float(src->info()->data_type()) && (_pool_info.pool_size == Size2D(2, 2))) { add_3D_tensor_argument(idx, indices, slice); } enqueue(queue, *this, slice, lws_hint()); } while(window_collapsed.slide_window_slice_3D(slice)); break; } case DataLayout::NHWC: { const size_t batch_size = dst->info()->tensor_shape().total_size_upper(3); Window slice = window_collapsed.first_slice_window_4D(); Window in_slice = window_collapsed.first_slice_window_4D(); in_slice.set(Window::DimX, Window::Dimension(0, src->info()->dimension(0), _num_elems_processed_per_iteration)); in_slice.set(Window::DimY, Window::Dimension(0, src->info()->dimension(1), pool_stride_x)); in_slice.set(Window::DimZ, Window::Dimension(0, src->info()->dimension(2), pool_stride_y)); in_slice.set(3, Window::Dimension(0, batch_size, 1)); do { // Set srcs unsigned int idx = 0; add_4D_tensor_argument(idx, src, in_slice); add_4D_tensor_argument(idx, dst, slice); if(indices && is_data_type_float(src->info()->data_type()) && (_pool_info.pool_type == PoolingType::MAX) && (_pool_info.pool_size == Size2D(2, 2))) { add_4D_tensor_argument(idx, indices, slice); } enqueue(queue, *this, slice, lws_hint()); } while(window.slide_window_slice_4D(slice) && window.slide_window_slice_4D(in_slice)); break; } default: ARM_COMPUTE_ERROR("Not implemented"); } } } // namespace kernels } // namespace opencl } // namespace arm_compute