/* * Copyright (c) 2022 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifdef ENABLE_EXPERIMENTAL_DYNAMIC_FUSION #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "src/core/CL/CLValidate.h" #include "src/core/experimental/dynamic_fusion/ClKernelBuildingAPI.h" #include "src/core/experimental/dynamic_fusion/WorkloadImpl/ClKernelGraph.h" #include "support/Cast.h" namespace arm_compute { namespace experimental { namespace dynamic_fusion { Status ClDirectConv2dKernel::generate(ClKernelBlueprint &bp) const { const auto input = _tensors.get_const_tensor(TensorType::ACL_SRC_0); const auto weight = _tensors.get_const_tensor(TensorType::ACL_SRC_1); const auto bias = _tensors.get_const_tensor(TensorType::ACL_SRC_2); const auto dst = _tensors.get_const_tensor(TensorType::ACL_DST_0); ARM_COMPUTE_ERROR_ON_NULLPTR(input, weight, dst); ArgumentID input_id; add_tensor(bp, input->desc, input_id, input->id); ArgumentID weight_id; add_tensor(bp, weight->desc, weight_id, weight->id); ArgumentID bias_id = g_arg_placeholder; if(bias != nullptr) { add_tensor(bp, bias->desc, bias_id, bias->id); } ArgumentID dst_id; add_tensor(bp, dst->desc, dst_id, dst->id); add_kcomp_direct_conv2d(bp, desc, input_id, weight_id, bias_id, dst_id); return Status{}; } Status ClDirectConv2dKernel::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const ClDirectConv2dKernelDescriptor &conv2d_desc) { // 1. Check validity ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst); // Matching data type ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, weights); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst); if(biases != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, biases); } // Matching data layout ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(src, weights); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(src, dst); if(biases != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(src, biases); } // All tensor infos are initialized ARM_COMPUTE_RETURN_ERROR_ON(src->tensor_shape().total_size() == 0); ARM_COMPUTE_RETURN_ERROR_ON(weights->tensor_shape().total_size() == 0); ARM_COMPUTE_RETURN_ERROR_ON(dst->tensor_shape().total_size() == 0); if(biases != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON(biases->tensor_shape().total_size() == 0); } // Device requirements are met ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(src); // weights shape is correct const DataLayout data_layout = src->data_layout(); const int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL); ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights->dimension(channel_idx) != src->dimension(channel_idx), "Weights feature map dimension should match the respective src's one"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights->num_dimensions() > 4, "Weights can be at most 4 dimensional"); // dst shape is correct PadStrideInfo legacy_pad_stride(conv2d_desc.conv2d.stride.x(), conv2d_desc.conv2d.stride.y(), conv2d_desc.conv2d.pad.left, conv2d_desc.conv2d.pad.right, conv2d_desc.conv2d.pad.top, conv2d_desc.conv2d.pad.bottom, DimensionRoundingType{}); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(dst->tensor_shape(), misc::shape_calculator::compute_deep_convolution_shape(*src, *weights, legacy_pad_stride)); // biases shape is correct if(biases != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(biases->dimension(0) != weights->dimension(3), "Biases size and number of dst feature maps should match"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(biases->num_dimensions() > 1, "Biases should be one dimensional"); } // 2. Check support level // Data type ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F16, DataType::F32); // Data layout ARM_COMPUTE_RETURN_ERROR_ON_DATA_LAYOUT_NOT_IN(src, DataLayout::NHWC); return Status{}; } bool ClDirectConv2dKernel::operator==(const ClKernel &other) const { const auto converted = *utils::cast::polymorphic_downcast(&other); return config() == other.config() && tensors() == other.tensors() && desc == converted.desc; } Status ClElementwiseKernel::generate(ClKernelBlueprint &bp) const { const auto lhs = _tensors.get_const_tensor(TensorType::ACL_SRC_0); const auto rhs = _tensors.get_const_tensor(TensorType::ACL_SRC_1); const auto dst = _tensors.get_const_tensor(TensorType::ACL_DST_0); ARM_COMPUTE_ERROR_ON_NULLPTR(lhs, rhs, dst); ArgumentID lhs_id; add_tensor(bp, lhs->desc, lhs_id, lhs->id); ArgumentID rhs_id; add_tensor(bp, rhs->desc, rhs_id, rhs->id); ArgumentID dst_id; add_tensor(bp, dst->desc, dst_id, dst->id); add_kcomp_eltwise_op(bp, desc, lhs_id, rhs_id, dst_id); return Status{}; } Status ClElementwiseKernel::validate(const ITensorInfo *lhs, const ITensorInfo *rhs, const ITensorInfo *dst) { // 1. Check validity ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(lhs, rhs, dst); // Matching data type ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(lhs, rhs); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(lhs, dst); // Matching data layout ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(lhs, rhs); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(lhs, dst); // All tensor infos are initialized ARM_COMPUTE_RETURN_ERROR_ON(lhs->tensor_shape().total_size() == 0); ARM_COMPUTE_RETURN_ERROR_ON(rhs->tensor_shape().total_size() == 0); ARM_COMPUTE_RETURN_ERROR_ON(dst->tensor_shape().total_size() == 0); // Device requirements are met ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(lhs); const bool in_place = (lhs == dst) || (rhs == dst); const bool src0_in_place = in_place && (lhs == dst); // dst shape is correct const TensorShape out_shape = TensorShape::broadcast_shape(lhs->tensor_shape(), rhs->tensor_shape()); ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, dst->tensor_shape(), 0), "Wrong shape for dst"); if(in_place) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, src0_in_place ? lhs->tensor_shape() : rhs->tensor_shape(), 0), "Wrong shape for dst, cannot do in_place calculation"); } // 2. Check support level // Data type ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(lhs, 1, DataType::F32, DataType::F16); // Data layout ARM_COMPUTE_RETURN_ERROR_ON_DATA_LAYOUT_NOT_IN(lhs, DataLayout::NHWC); return Status{}; } bool ClElementwiseKernel::operator==(const ClKernel &other) const { const auto converted = *utils::cast::polymorphic_downcast(&other); return config() == other.config() && tensors() == other.tensors() && desc == converted.desc; } Status ClFloorKernel::generate(ClKernelBlueprint &bp) const { const auto src = _tensors.get_const_tensor(TensorType::ACL_SRC_0); const auto dst = _tensors.get_const_tensor(TensorType::ACL_DST_0); ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst); ArgumentID src_id; add_tensor(bp, src->desc, src_id, src->id); ArgumentID dst_id; add_tensor(bp, dst->desc, dst_id, dst->id); add_kcomp_floor(bp, desc, src_id, dst_id); return Status{}; } Status ClFloorKernel::validate(const ITensorInfo *src, const ITensorInfo *dst) { // 1. Check validity ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst); // Matching data type ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst); // Matching data layout ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(src, dst); // All tensor infos are initialized ARM_COMPUTE_RETURN_ERROR_ON(src->tensor_shape().total_size() == 0); ARM_COMPUTE_RETURN_ERROR_ON(dst->tensor_shape().total_size() == 0); // Device requirements are met ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(src); // dst shape is correct ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(src->tensor_shape(), dst->tensor_shape(), 0), "Wrong shape for dst"); // 2. Check support level // Data type ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F32, DataType::F16); // Data layout ARM_COMPUTE_RETURN_ERROR_ON_DATA_LAYOUT_NOT_IN(src, DataLayout::NHWC); return Status{}; } bool ClFloorKernel::operator==(const ClKernel &other) const { const auto converted = *utils::cast::polymorphic_downcast(&other); return config() == other.config() && tensors() == other.tensors() && desc == converted.desc; } std::vector traverse(const ClKernelGraph &graph) { std::vector kernels; const auto sorted = graph.graph.topological_sort(); for(const auto &pack : sorted.second) { kernels.push_back(graph.kernels.at(pack.op).get()); } return kernels; } std::vector traverse(ClKernelGraph &graph) { std::vector kernels; const auto sorted = graph.graph.topological_sort(); for(const auto &pack : sorted.second) { kernels.push_back(graph.kernels.at(pack.op).get()); } return kernels; } } // namespace dynamic_fusion } // namespace experimental } // namespace arm_compute #endif /* ENABLE_EXPERIMENTAL_DYNAMIC_FUSION */