/* * Copyright (c) 2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef SRC_CORE_NEON_KERNELS_SUB_LIST_H #define SRC_CORE_NEON_KERNELS_SUB_LIST_H #include "arm_compute/core/Types.h" #include "arm_compute/core/utils/misc/Traits.h" #include "src/core/NEON/wrapper/wrapper.h" namespace arm_compute { namespace cpu { #define DECLARE_SUB_KERNEL(func_name) \ void func_name(const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window) DECLARE_SUB_KERNEL(sub_qasymm8_neon); DECLARE_SUB_KERNEL(sub_qasymm8_signed_neon); DECLARE_SUB_KERNEL(sub_qsymm16_neon); DECLARE_SUB_KERNEL(sub_s16_u8_s16_neon); DECLARE_SUB_KERNEL(sub_u8_s16_s16_neon); DECLARE_SUB_KERNEL(sub_u8_u8_s16_neon); #undef DECLARE_SUB_KERNEL template void sub_same_neon(const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window) { /** NEON vector tag type. */ using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t; bool is_sat = policy == ConvertPolicy::SATURATE; // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(src0->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); constexpr int window_step_x = 16 / sizeof(T); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = src0->info()->tensor_shape().x() != src1->info()->tensor_shape().x(); Iterator input1(src0, window.broadcast_if_dimension_le_one(src0->info()->tensor_shape())); Iterator input2(src1, window.broadcast_if_dimension_le_one(src1->info()->tensor_shape())); Iterator output(dst, window); if(is_broadcast_across_x) { const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? src1 : src0; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? src1 : src0; // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(dst, win); execute_window_loop(win, [&](const Coordinates &) { const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); const T broadcast_value = *reinterpret_cast(broadcast_input.ptr()); const auto broadcast_value_vec = wrapper::vdup_n(broadcast_value, ExactTagType{}); // Compute S elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto non_broadcast_v = wrapper::vloadq(non_broadcast_input_ptr + x); auto res = is_sat ? wrapper::vqsub(broadcast_value_vec, non_broadcast_v) : wrapper::vsub(broadcast_value_vec, non_broadcast_v); if(is_broadcast_input_2) { res = wrapper::vmul(res, wrapper::vdup_n(static_cast(-1), ExactTagType{})); } wrapper::vstore(output_ptr + x, res); } // Compute left-over elements for(; x < window_end_x; ++x) { const auto non_broadcast_v = *(non_broadcast_input_ptr + x); auto res = is_sat ? wrapper::sub_sat(broadcast_value, non_broadcast_v) : broadcast_value - non_broadcast_v; if(is_broadcast_input_2) { res = static_cast(-1) * res; } *(output_ptr + x) = res; } }, broadcast_input, non_broadcast_input, output); } else { // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(src0, input1_win); Iterator input2(src1, input2_win); Iterator output(dst, win); execute_window_loop(win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); // Compute S elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto val1 = wrapper::vloadq(input1_ptr + x); const auto val2 = wrapper::vloadq(input2_ptr + x); const auto res = is_sat ? wrapper::vqsub(val1, val2) : wrapper::vsub(val1, val2); wrapper::vstore(output_ptr + x, res); } // Compute left-over elements for(; x < window_end_x; ++x) { const auto val1 = *(input1_ptr + x); const auto val2 = *(input2_ptr + x); *(output_ptr + x) = is_sat ? wrapper::sub_sat(val1, val2) : val1 - val2; } }, input1, input2, output); } } } // namespace cpu } // namespace arm_compute #endif // SRC_CORE_NEON_KERNELS_SUB_LIST_H