/* * Copyright (c) 2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef SRC_CORE_NEON_KERNELS_QUANTIZED_H #define SRC_CORE_NEON_KERNELS_QUANTIZED_H #include "arm_compute/core/Types.h" #include "arm_compute/core/utils/misc/Traits.h" #include "src/core/NEON/NEAsymm.h" #include "src/core/NEON/NEFixedPoint.h" #include "src/core/NEON/NEMath.h" #include "src/core/NEON/wrapper/wrapper.h" #include namespace arm_compute { namespace cpu { template inline typename std::enable_if::value, int8_t>::type quantize(float val, const UniformQuantizationInfo &info) { return quantize_qasymm8_signed(val, info); } template inline typename std::enable_if::value, uint8_t>::type quantize(float val, const UniformQuantizationInfo &info) { return quantize_qasymm8(val, info); } template inline T vcvtq_q32_f32(float32x4_t values); template <> inline uint32x4_t vcvtq_q32_f32(float32x4_t values) { return vcvtq_u32_f32(values); } template <> inline int32x4_t vcvtq_q32_f32(float32x4_t values) { return vcvtq_s32_f32(values); } template inline float32x4_t vcvtq_f32_q32(T values); template <> inline float32x4_t vcvtq_f32_q32(uint32x4_t values) { return vcvtq_f32_u32(values); } template <> inline float32x4_t vcvtq_f32_q32(int32x4_t values) { return vcvtq_f32_s32(values); } template inline Tout vrequantize_pooling_with_scale(const float32x4x4_t &acc, const float quant_rescale, const float scale_pooling, const int32_t new_offset); template <> inline uint8x16_t vrequantize_pooling_with_scale(const float32x4x4_t &acc, const float quant_rescale, const float scale_pooling, const int32_t new_offset) { const float new_scale = quant_rescale / scale_pooling; return vquantize(acc, UniformQuantizationInfo(new_scale, new_offset)); } template <> inline int8x16_t vrequantize_pooling_with_scale(const float32x4x4_t &acc, const float quant_rescale, const float scale_pooling, const int32_t new_offset) { const float new_scale = quant_rescale / scale_pooling; return vquantize_signed(acc, UniformQuantizationInfo(new_scale, new_offset)); } template inline Tout vrequantize_pooling(Tin vec1, Tin vec2, const UniformQuantizationInfo &requant_qinfo); template <> inline uint8x16_t vrequantize_pooling(uint8x8_t vec1, uint8x8_t vec2, const UniformQuantizationInfo &requant_qinfo) { const float32x4x4_t acc = { { vcvtq_f32_u32(vmovl_u16(vget_low_u16(vmovl_u8((vec1))))), vcvtq_f32_u32(vmovl_u16(vget_high_u16(vmovl_u8((vec1))))), vcvtq_f32_u32(vmovl_u16(vget_low_u16(vmovl_u8((vec2))))), vcvtq_f32_u32(vmovl_u16(vget_high_u16(vmovl_u8((vec2))))), } }; return vquantize(acc, requant_qinfo); } template <> inline int8x16_t vrequantize_pooling(int8x8_t vec1, int8x8_t vec2, const UniformQuantizationInfo &requant_qinfo) { const float32x4x4_t acc = { { vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8((vec1))))), vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8((vec1))))), vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8((vec2))))), vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8((vec2))))), } }; return vquantize_signed(acc, requant_qinfo); } template inline T vrequantize_pooling(T &vec, const UniformQuantizationInfo &requant_qinfo); template <> inline uint8x8_t vrequantize_pooling(uint8x8_t &vec, const UniformQuantizationInfo &requant_qinfo) { const float32x4x2_t acc = { { vcvtq_f32_u32(vmovl_u16(vget_low_u16(vmovl_u8((vec))))), vcvtq_f32_u32(vmovl_u16(vget_high_u16(vmovl_u8((vec))))), } }; return vquantize(acc, requant_qinfo); } template <> inline int8x8_t vrequantize_pooling(int8x8_t &vec, const UniformQuantizationInfo &requant_qinfo) { const float32x4x2_t acc = { { vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8((vec))))), vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8((vec))))), } }; return vquantize_signed(acc, requant_qinfo); } inline float calculate_avg_scale(bool exclude_padding, DataLayout data_layout, const Coordinates &id, const int pool_size_x, const int pool_size_y, const int upper_bound_w, const int upper_bound_h, const int pad_x, const int pad_y, const int stride_x, const int stride_y) { const unsigned int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const unsigned int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); int start_x = id[idx_width] * stride_x - pad_x; int start_y = id[idx_height] * stride_y - pad_y; const int end_x = std::min(start_x + pool_size_x, upper_bound_w); const int end_y = std::min(start_y + pool_size_y, upper_bound_h); if(exclude_padding) { start_x = std::max(0, start_x); start_y = std::max(0, start_y); } return 1.f / ((end_y - start_y) * (end_x - start_x)); } template void poolingMxN_q8_neon_nhwc(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window) { ARM_COMPUTE_UNUSED(dst1); const int window_start_x = window.x().start(); const int window_end_x = window.x().end(); const int window_step_x = 16; const int window_half_step_x = window_step_x / 2; Window window_out = window; window_out.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator in(src, window_src); Iterator out(dst0, window_out); using q8x8_t = typename wrapper::traits::neon_vector::type; using q8x16_t = typename wrapper::traits::neon_vector::type; using q16_t = typename wrapper::traits::promote_t; using q16x8_t = typename wrapper::traits::neon_vector::type; using q32_t = typename wrapper::traits::promote_t; using q32x4_t = typename wrapper::traits::neon_vector::type; const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width; const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height; const int pool_pad_right = pool_info.pad_stride_info.pad_right(); const int pool_pad_top = pool_info.pad_stride_info.pad_top(); const int pool_pad_left = pool_info.pad_stride_info.pad_left(); const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride(); const int upper_bound_w = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = src->info()->dimension(2) + (pool_info.exclude_padding ? 0 : pool_pad_bottom); const float32x4_t half_scale_v = vdupq_n_f32(0.5f); const UniformQuantizationInfo src_qinfo = src->info()->quantization_info().uniform(); const UniformQuantizationInfo dst_qinfo = dst0->info()->quantization_info().uniform(); const float quant_rescale = dst_qinfo.scale / src_qinfo.scale; // "new_offset" doesn't have to consider the "half_scale_v" in its computation // With a requantization performed in a single step there won't be uncertainties introduced const int32_t new_offset = dst_qinfo.offset - static_cast(static_cast(src_qinfo.offset) / quant_rescale); const float requant_scale = dst_qinfo.scale / src_qinfo.scale; const int32_t requant_offset = dst_qinfo.offset - static_cast(static_cast(src_qinfo.offset) / requant_scale); const UniformQuantizationInfo requant_qinfo = UniformQuantizationInfo(requant_scale, requant_offset); execute_window_loop(window_out, [&](const Coordinates & id) { const int idx_width = id.y() * pool_stride_x; const int idx_height = id.z() * pool_stride_y; const int pool_limit_y = pool_pad_top - idx_height; const int pool_limit_x = pool_pad_left - idx_width; const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y); const int pool_end_y = std::min(pool_size_y, window_src.z().end() + pool_limit_y); const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x); const int pool_end_x = std::min(pool_size_x, window_src.y().end() + pool_limit_x); int x_off = window_start_x; for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x) { if(pool_info.pool_type != PoolingType::MAX) { q32x4_t vres1 = wrapper::vdup_n(static_cast(0.f), wrapper::traits::vector_128_tag{}); q32x4_t vres2 = wrapper::vdup_n(static_cast(0.f), wrapper::traits::vector_128_tag{}); q32x4_t vres3 = wrapper::vdup_n(static_cast(0.f), wrapper::traits::vector_128_tag{}); q32x4_t vres4 = wrapper::vdup_n(static_cast(0.f), wrapper::traits::vector_128_tag{}); // Calculate scale const float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); // Perform pooling for(int y = pool_start_y; y < pool_end_y; ++y) { for(int x = pool_start_x; x < pool_end_x; ++x) { const q8x16_t data = wrapper::vloadq(reinterpret_cast(in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast (src->info()->strides_in_bytes().z())) + x_off); const q16x8_t data_q16 = wrapper::vmovl(wrapper::vgetlow(data)); const q16x8_t data2_q16 = wrapper::vmovl(wrapper::vgethigh(data)); vres1 = wrapper::vadd(vres1, wrapper::vmovl(wrapper::vgetlow(data_q16))); vres2 = wrapper::vadd(vres2, wrapper::vmovl(wrapper::vgethigh(data_q16))); vres3 = wrapper::vadd(vres3, wrapper::vmovl(wrapper::vgetlow(data2_q16))); vres4 = wrapper::vadd(vres4, wrapper::vmovl(wrapper::vgethigh(data2_q16))); } } if(src_qinfo != dst_qinfo) { const float32x4x4_t vres = { { vcvtq_f32_q32(vres1), vcvtq_f32_q32(vres2), vcvtq_f32_q32(vres3), vcvtq_f32_q32(vres4), } }; const auto requantized_dst = vrequantize_pooling_with_scale(vres, quant_rescale, scale, new_offset); // Store result wrapper::vstore(reinterpret_cast(out.ptr()) + x_off, wrapper::vgetlow(requantized_dst)); wrapper::vstore(reinterpret_cast(out.ptr()) + x_off + 8, wrapper::vgethigh(requantized_dst)); } else { const float32x4_t scale_v = vdupq_n_f32(scale); // Divide by scale and add 0.5f to round to nearest instead of rounding towards zero vres1 = vcvtq_q32_f32(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres1), scale_v)); vres2 = vcvtq_q32_f32(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres2), scale_v)); vres3 = vcvtq_q32_f32(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres3), scale_v)); vres4 = vcvtq_q32_f32(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres4), scale_v)); const q8x8_t res1 = wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(vres1), wrapper::vmovn(vres2))); const q8x8_t res2 = wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(vres3), wrapper::vmovn(vres4))); // Store result wrapper::vstore(reinterpret_cast(out.ptr()) + x_off, res1); wrapper::vstore(reinterpret_cast(out.ptr()) + x_off + 8, res2); } } else { q8x16_t vres = wrapper::vdup_n(std::numeric_limits::min(), wrapper::traits::vector_128_tag{}); for(int y = pool_start_y; y < pool_end_y; ++y) { for(int x = pool_start_x; x < pool_end_x; ++x) { const q8x16_t data = wrapper::vloadq(reinterpret_cast(in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast (src->info()->strides_in_bytes().z())) + x_off); vres = wrapper::vmax(vres, data); } } // Store result wrapper::vstore(reinterpret_cast(out.ptr()) + x_off, (src_qinfo != dst_qinfo) ? vrequantize_pooling(wrapper::vgetlow(vres), wrapper::vgethigh(vres), requant_qinfo) : vres); } } if(pool_info.pool_type == PoolingType::MAX) { for(; x_off <= (window_end_x - window_half_step_x); x_off += window_half_step_x) { q8x8_t vres = wrapper::vdup_n(std::numeric_limits::min(), wrapper::traits::vector_64_tag{}); for(int y = pool_start_y; y < pool_end_y; ++y) { for(int x = pool_start_x; x < pool_end_x; ++x) { const q8x8_t data = wrapper::vload(reinterpret_cast(in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast (src->info()->strides_in_bytes().z())) + x_off); vres = wrapper::vmax(vres, data); } } // Store result wrapper::vstore(reinterpret_cast(out.ptr()) + x_off, (src_qinfo != dst_qinfo) ? vrequantize_pooling(vres, requant_qinfo) : vres); } } // Left-overs loop for(; x_off < window_end_x; ++x_off) { if(pool_info.pool_type != PoolingType::MAX) { q32_t res = static_cast(0.f); // Calculate scale const float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); // Perform pooling for(int y = pool_start_y; y < pool_end_y; ++y) { for(int x = pool_start_x; x < pool_end_x; ++x) { const T data = *(reinterpret_cast(in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast (src->info()->strides_in_bytes().z())) + x_off); res += data; } } if(src_qinfo != dst_qinfo) { const float res_f = static_cast(res); const float new_scale = quant_rescale / scale; const auto requantized_dst = quantize(res_f, UniformQuantizationInfo(new_scale, new_offset)); // Store result *(reinterpret_cast(out.ptr()) + x_off) = requantized_dst; } else { // Divide by scale and add 0.5f to round to nearest instead of rounding towards zero res = static_cast(0.5f + static_cast(res) * scale); // Store result *(reinterpret_cast(out.ptr()) + x_off) = res; } } else { T res = std::numeric_limits::min(); for(int y = pool_start_y; y < pool_end_y; ++y) { for(int x = pool_start_x; x < pool_end_x; ++x) { const T data = *(reinterpret_cast(in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast (src->info()->strides_in_bytes().z())) + x_off); res = std::max(res, data); } } // Store result if(src_qinfo != dst_qinfo) { const float res_f = static_cast(res); *(reinterpret_cast(out.ptr()) + x_off) = quantize(res_f, requant_qinfo); } else { *(reinterpret_cast(out.ptr()) + x_off) = res; } } } }, in, out); } #if defined(ENABLE_NCHW_KERNELS) template inline void scale_vector_q16x8(bool exclude_padding, TVec &v, const Coordinates &id, int id_offset, int step, const int pool_size, const int upper_bound_w, const int upper_bound_h, const int pad_x, const int pad_y, const int stride_x, const int stride_y) { int start_x = (id.x() + id_offset) * stride_x - pad_x; int start_y = id.y() * stride_y - pad_y; const int end_y = std::min(start_y + pool_size, upper_bound_h); if(exclude_padding) { start_y = std::max(0, start_y); } std::array elems = { { wrapper::vgetlane(v, 0), wrapper::vgetlane(v, 1), wrapper::vgetlane(v, 2), wrapper::vgetlane(v, 3), wrapper::vgetlane(v, 4), wrapper::vgetlane(v, 5), wrapper::vgetlane(v, 6), wrapper::vgetlane(v, 7), } }; for(auto &el : elems) { int c_start_x = start_x; const int end_x = std::min(c_start_x + pool_size, upper_bound_w); if(exclude_padding) { c_start_x = std::max(0, c_start_x); } float scale = 1.f / ((end_y - start_y) * (end_x - c_start_x)); el *= scale; start_x += step * stride_x; } v = wrapper::vsetlane(elems[0], v, 0); v = wrapper::vsetlane(elems[1], v, 1); v = wrapper::vsetlane(elems[2], v, 2); v = wrapper::vsetlane(elems[3], v, 3); v = wrapper::vsetlane(elems[4], v, 4); v = wrapper::vsetlane(elems[5], v, 5); v = wrapper::vsetlane(elems[6], v, 6); v = wrapper::vsetlane(elems[7], v, 7); } template void pooling2_quantized_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window) { ARM_COMPUTE_UNUSED(dst1); Iterator in(src, window_src); Iterator out(dst0, window); /** Neon vector types */ using q8x8_t = typename wrapper::traits::neon_vector::type; using q8x16_t = typename wrapper::traits::neon_vector::type; using q8x8x2_t = typename std::conditional::value, uint8x8x2_t, int8x8x2_t>::type; using q16_t = typename wrapper::traits::promote_t; using q16x4_t = typename wrapper::traits::neon_vector::type; using q16x8_t = typename wrapper::traits::neon_vector::type; using q16x8x2_t = typename wrapper::traits::neon_vector::type; constexpr int pool_size = 2; int pool_stride_x = 0; int pool_stride_y = 0; const int pool_pad_right = pool_info.pad_stride_info.pad_right(); const int pool_pad_top = pool_info.pad_stride_info.pad_top(); const int pool_pad_left = pool_info.pad_stride_info.pad_left(); const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom(); std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride(); const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom); const T *const src_top_ptr = reinterpret_cast(src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top)))); const T *const src_bottom_ptr = reinterpret_cast(src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + 1))); const int scale_step_x = (pool_stride_x == 1) ? 2 : 1; const UniformQuantizationInfo src_qinfo = src->info()->quantization_info().uniform(); const UniformQuantizationInfo dst_qinfo = dst0->info()->quantization_info().uniform(); const bool have_different_qinfo = src_qinfo != dst_qinfo; const float requant_scale = dst_qinfo.scale / src_qinfo.scale; const int32_t requant_offset = dst_qinfo.offset - static_cast(static_cast(src_qinfo.offset) / requant_scale); const UniformQuantizationInfo requant_qinfo = UniformQuantizationInfo(requant_scale, requant_offset); execute_window_loop(window, [&](const Coordinates & id) { const auto top_data = wrapper::vloadq(src_top_ptr + in.offset()); const auto bottom_data = wrapper::vloadq(src_bottom_ptr + in.offset()); q8x8_t lower_res = {}; q8x8_t upper_res = {}; if(pool_info.pool_type != PoolingType::MAX) { const q16x8x2_t top_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(top_data)), wrapper::vmovl(wrapper::vgethigh(top_data)) } }; const q16x8x2_t bottom_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(bottom_data)), wrapper::vmovl(wrapper::vgethigh(bottom_data)) } }; // Add rows const q16x8x2_t vrsum = { { wrapper::vadd(top_data_q16.val[0], bottom_data_q16.val[0]), wrapper::vadd(top_data_q16.val[1], bottom_data_q16.val[1]), } }; // Pair-wise add row data const q16x4_t vpsum_1 = wrapper::vpadd(wrapper::vgetlow(vrsum.val[0]), wrapper::vgethigh(vrsum.val[0])); const q16x4_t vpsum_2 = wrapper::vpadd(wrapper::vgetlow(vrsum.val[1]), wrapper::vgethigh(vrsum.val[1])); q16x8_t res_lower = wrapper::vcombine(vpsum_1, vpsum_2); // Scale lower result scale_vector_q16x8(pool_info.exclude_padding, res_lower, id, 0, scale_step_x, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); lower_res = wrapper::vmovn(res_lower); // Compute upper result for stride_x == 1 if(pool_stride_x == 1) { // Shifted row sum const q16x8x2_t vrsum_shifted = { { wrapper::vext_1(vrsum.val[0], vrsum.val[1]), wrapper::vext_1(vrsum.val[1], vrsum.val[1]) } }; // Pair-wise add shifted row q16x8_t res_upper = wrapper::vcombine( wrapper::vpadd(wrapper::vgetlow(vrsum_shifted.val[0]), wrapper::vgethigh(vrsum_shifted.val[0])), wrapper::vpadd(wrapper::vgetlow(vrsum_shifted.val[1]), wrapper::vgethigh(vrsum_shifted.val[1]))); // Scale upper result scale_vector_q16x8(pool_info.exclude_padding, res_upper, id, 1, 2, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); upper_res = wrapper::vmovn(res_upper); } } else { const q8x16_t max_data = wrapper::vmax(top_data, bottom_data); lower_res = wrapper::vpmax(wrapper::vgetlow(max_data), wrapper::vgethigh(max_data)); if(pool_stride_x == 1) { const q8x16_t max_data_shifted = wrapper::vext_1(max_data, max_data); upper_res = wrapper::vpmax(wrapper::vgetlow(max_data_shifted), wrapper::vgethigh(max_data_shifted)); } } if(have_different_qinfo) { const auto requantized_dst = vrequantize_pooling(lower_res, upper_res, requant_qinfo); lower_res = wrapper::vgetlow(requantized_dst); upper_res = wrapper::vgethigh(requantized_dst); } // Store result if(pool_stride_x == 1) { const q8x8x2_t res = { { lower_res, upper_res } }; wrapper::vstore(reinterpret_cast(out.ptr()), res); } else { wrapper::vstore(reinterpret_cast(out.ptr()), lower_res); } }, in, out); } template void pooling3_quantized_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window) { ARM_COMPUTE_UNUSED(dst1); Iterator in(src, window_src); Iterator out(dst0, window); /** Neon vector types */ using q8x8_t = typename wrapper::traits::neon_vector::type; using q8x16_t = typename wrapper::traits::neon_vector::type; using q8x8x2_t = typename std::conditional::value, uint8x8x2_t, int8x8x2_t>::type; using q16_t = typename wrapper::traits::promote_t; using q16x8_t = typename wrapper::traits::neon_vector::type; using q16x8x2_t = typename wrapper::traits::neon_vector::type; constexpr int pool_size = 3; const int pool_pad_right = pool_info.pad_stride_info.pad_right(); const int pool_pad_top = pool_info.pad_stride_info.pad_top(); const int pool_pad_left = pool_info.pad_stride_info.pad_left(); const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride(); const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom); const UniformQuantizationInfo &src_qinfo = src->info()->quantization_info().uniform(); const UniformQuantizationInfo &dst_qinfo = dst0->info()->quantization_info().uniform(); const float requant_scale = dst_qinfo.scale / src_qinfo.scale; const int32_t requant_offset = dst_qinfo.offset - static_cast(static_cast(src_qinfo.offset) / requant_scale); const UniformQuantizationInfo requant_qinfo = UniformQuantizationInfo(requant_scale, requant_offset); const T *const src_top_ptr = reinterpret_cast(src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top)))); const T *const src_middle_ptr = reinterpret_cast(src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + 1))); const T *const src_bottom_ptr = reinterpret_cast(src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + 2))); execute_window_loop(window, [&](const Coordinates & id) { const auto top_data = wrapper::vloadq(src_top_ptr + in.offset()); const auto middle_data = wrapper::vloadq(src_middle_ptr + in.offset()); const auto bottom_data = wrapper::vloadq(src_bottom_ptr + in.offset()); q8x8_t fres = {}; q8x16_t fqres = {}; if(pool_info.pool_type == PoolingType::AVG) { // Convert data to u16 const q16x8x2_t top_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(top_data)), wrapper::vmovl(wrapper::vgethigh(top_data)) } }; const q16x8x2_t middle_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(middle_data)), wrapper::vmovl(wrapper::vgethigh(middle_data)) } }; const q16x8x2_t bottom_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(bottom_data)), wrapper::vmovl(wrapper::vgethigh(bottom_data)) } }; // Calculate row sums const q16x8x2_t vrsum = { { wrapper::vadd(wrapper::vadd(top_data_q16.val[0], bottom_data_q16.val[0]), middle_data_q16.val[0]), wrapper::vadd(wrapper::vadd(top_data_q16.val[1], bottom_data_q16.val[1]), middle_data_q16.val[1]), } }; const q16x8x2_t vrsum_shifted_1 = { { wrapper::vext_1(vrsum.val[0], vrsum.val[1]), wrapper::vext_1(vrsum.val[1], vrsum.val[1]) } }; const q16x8x2_t vrsum_shifted_2 = { { wrapper::vext_2(vrsum.val[0], vrsum.val[1]), wrapper::vext_2(vrsum.val[1], vrsum.val[1]) } }; // Calculate final sum q16x8x2_t final_sum = { { wrapper::vadd(wrapper::vadd(vrsum.val[0], vrsum_shifted_1.val[0]), vrsum_shifted_2.val[0]), wrapper::vadd(wrapper::vadd(vrsum.val[1], vrsum_shifted_1.val[1]), vrsum_shifted_2.val[1]), } }; if(pool_stride_x == 2) { q16x8_t res = { wrapper::vgetlane(final_sum.val[0], 0), wrapper::vgetlane(final_sum.val[0], 2), wrapper::vgetlane(final_sum.val[0], 4), wrapper::vgetlane(final_sum.val[0], 6), wrapper::vgetlane(final_sum.val[1], 0), wrapper::vgetlane(final_sum.val[1], 2), wrapper::vgetlane(final_sum.val[1], 4), wrapper::vgetlane(final_sum.val[1], 6), }; scale_vector_q16x8(pool_info.exclude_padding, res, id, 0, 1, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); fres = wrapper::vmovn(res); } else { // Scale lower result scale_vector_q16x8(pool_info.exclude_padding, final_sum.val[0], id, 0, 1, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); // Scale lower result scale_vector_q16x8(pool_info.exclude_padding, final_sum.val[1], id, 8, 1, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); fqres = wrapper::vcombine(wrapper::vmovn(final_sum.val[0]), wrapper::vmovn(final_sum.val[1])); } } else { const q8x16_t max_data = wrapper::vmax(wrapper::vmax(top_data, bottom_data), middle_data); const q8x16_t max_data_shift1 = wrapper::vext_1(max_data, max_data); const q8x16_t max_data_shift2 = wrapper::vext_2(max_data, max_data); const q8x16_t final_max = wrapper::vmax(wrapper::vmax(max_data, max_data_shift1), max_data_shift2); if(pool_stride_x == 2) { const q8x8x2_t table = { { wrapper::vgetlow(final_max), wrapper::vgethigh(final_max) } }; static const q8x8_t lookup_val = { 0, 2, 4, 6, 8, 10, 12, 14 }; fres = wrapper::vtbl(table, lookup_val); } else { fqres = final_max; } } // Store result if(pool_stride_x == 1) { if(src_qinfo != dst_qinfo) { fqres = vrequantize_pooling(wrapper::vgetlow(fqres), wrapper::vgethigh(fqres), requant_qinfo); } wrapper::vstore(reinterpret_cast(out.ptr()), fqres); } else { if(src_qinfo != dst_qinfo) { fres = vrequantize_pooling(fres, requant_qinfo); } wrapper::vstore(reinterpret_cast(out.ptr()), fres); } }, in, out); } template void poolingMxN_quantized_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window) { ARM_COMPUTE_UNUSED(dst1); Iterator in(src, window_src); Iterator out(dst0, window); /** Neon vector types */ using q8x8_t = typename wrapper::traits::neon_vector::type; using q16_t = typename wrapper::traits::promote_t; using q16x8_t = typename wrapper::traits::neon_vector::type; using q32_t = typename wrapper::traits::promote_t; using q32x4_t = typename wrapper::traits::neon_vector::type; const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width; const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height; const int pool_pad_right = pool_info.pad_stride_info.pad_right(); const int pool_pad_top = pool_info.pad_stride_info.pad_top(); const int pool_pad_left = pool_info.pad_stride_info.pad_left(); const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride(); const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom); const UniformQuantizationInfo &src_qinfo = src->info()->quantization_info().uniform(); const UniformQuantizationInfo &dst_qinfo = dst0->info()->quantization_info().uniform(); execute_window_loop(window, [&](const Coordinates & id) { T res = std::numeric_limits::min(); if(pool_info.pool_type != PoolingType::MAX) { q32x4_t vres = wrapper::vdup_n(static_cast(0.f), wrapper::traits::vector_128_tag{}); q32_t sres = 0; // Calculate scale const float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); // Perform pooling for(int y = 0; y < pool_size_y; ++y) { int x = 0; for(; x <= (pool_size_x - 8); x += 8) { const q8x8_t data = wrapper::vload(reinterpret_cast(in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast (src->info()->strides_in_bytes().y()))); const q16x8_t data_q16 = wrapper::vmovl(data); vres = wrapper::vadd(vres, wrapper::vaddl(wrapper::vgethigh(data_q16), wrapper::vgetlow(data_q16))); } // Leftover for loop for(; x < pool_size_x; ++x) { T data = *(reinterpret_cast(in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast (src->info()->strides_in_bytes().y()))); sres += data; } } // Reduction const auto tmp = wrapper::vpadd(wrapper::vgethigh(vres), wrapper::vgetlow(vres)); sres += wrapper::vgetlane(tmp, 0) + wrapper::vgetlane(tmp, 1); // Divide by scale res = static_cast(support::cpp11::round(sres * scale)); } else { q8x8_t vres = wrapper::vdup_n(std::numeric_limits::min(), wrapper::traits::vector_64_tag{}); for(int y = 0; y < pool_size_y; ++y) { int x = 0; for(; x <= (pool_size_x - 8); x += 8) { const q8x8_t data = wrapper::vload(reinterpret_cast(in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast (src->info()->strides_in_bytes().y()))); vres = wrapper::vmax(vres, data); } // Leftover for loop for(; x < pool_size_x; ++x) { const T data = *(reinterpret_cast(in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast (src->info()->strides_in_bytes().y()))); res = std::max(res, data); } } // Reduce max vres = wrapper::vpmax(vres, vres); vres = wrapper::vpmax(vres, vres); vres = wrapper::vpmax(vres, vres); // Get max value res = std::max(res, wrapper::vgetlane(vres, 0)); } // Store result res = (src_qinfo != dst_qinfo) ? Qasymm8QuantizationHelper::quantize(Qasymm8QuantizationHelper::dequantize(res, src_qinfo), dst_qinfo) : res; *(reinterpret_cast(out.ptr())) = res; }, in, out); } #endif /* defined(ENABLE_NCHW_KERNELS) */ } // namespace cpu } // namespace arm_compute #endif // SRC_CORE_NEON_KERNELS_QUANTIZED_H