/* * Copyright (c) 2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/utils/misc/Traits.h" #include "src/core/NEON/wrapper/intrinsics/intrinsics.h" #include "src/core/cpu/kernels/pooling/neon/list.h" #include "src/core/helpers/WindowHelpers.h" #ifdef ENABLE_NCHW_KERNELS namespace arm_compute { namespace cpu { #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC void pooling3_fp16_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window) { ARM_COMPUTE_UNUSED(dst1); ARM_COMPUTE_UNUSED(pool_info.pool_type); ARM_COMPUTE_UNUSED(pool_info.exclude_padding); Iterator in(src, window_src); Iterator out(dst0, window); constexpr const int pool_size = 3; const int pool_pad_right = pool_info.pad_stride_info.pad_right(); const int pool_pad_top = pool_info.pad_stride_info.pad_top(); const int pool_pad_left = pool_info.pad_stride_info.pad_left(); const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride(); const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom); const unsigned char *const src_top_ptr = src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top))); const unsigned char *const src_middle_ptr = src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + 1)); const unsigned char *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + 2)); execute_window_loop(window, [&](const Coordinates & id) { float16x4_t top_data = vld1_f16(reinterpret_cast(src_top_ptr + in.offset())); float16x4_t middle_data = vld1_f16(reinterpret_cast(src_middle_ptr + in.offset())); float16x4_t bottom_data = vld1_f16(reinterpret_cast(src_bottom_ptr + in.offset())); float16x4_t res = {}; // Get power of 2 in case of l2 pooling if(pool_info.pool_type == PoolingType::L2) { top_data = vmul_f16(top_data, top_data); middle_data = vmul_f16(middle_data, middle_data); bottom_data = vmul_f16(bottom_data, bottom_data); } if(pool_info.pool_type != PoolingType::MAX) { // Calculate scale const float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); const float16x4_t scale_v = vdup_n_f16(scale); // Perform pooling const float16x4_t sum_data = vadd_f16(vadd_f16(top_data, bottom_data), middle_data); res = vpadd_f16(vset_lane_f16(0.f, sum_data, 3), sum_data); res = vmul_f16(vpadd_f16(res, res), scale_v); } else { const float16x4_t max_data = vmax_f16(vmax_f16(top_data, bottom_data), middle_data); res = vpmax_f16(vset_lane_f16(-std::numeric_limits::max(), max_data, 3), max_data); res = vpmax_f16(res, res); } // Calculate square-root in case of l2 pooling if(pool_info.pool_type == PoolingType::L2) { res = vinv_f16(vinvsqrt_f16(res)); } *(reinterpret_cast(out.ptr())) = vget_lane_f16(res, 0); }, in, out); } template inline typename std::enable_if::value, float32x2_t>::type f16_to_f32(float16x4_t in) { float32x2_t out = { static_cast(vget_lane_f16(in, 0)), static_cast(vget_lane_f16(in, 1)) }; return out; } #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ template inline typename std::enable_if::value, float32x2_t>::type f16_to_f32(float32x2_t in) { return in; } template void pooling2_nchw_maxpool_indices(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window) { Iterator in(src, window_src); Iterator out(dst0, window); Iterator indices(dst1, window); const int pool_pad_top = pool_info.pad_stride_info.pad_top(); const int pool_pad_left = pool_info.pad_stride_info.pad_left(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride(); const uint8_t *const src_top_ptr = src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top))); const uint8_t *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + 1)); const int pad_left = src->info()->padding().left; const int pad_right = src->info()->padding().right; const int in_stride_y = static_cast(src->info()->strides_in_bytes().y()); execute_window_loop(window, [&](const Coordinates & id) { auto top_data = wrapper::vload(reinterpret_cast(src_top_ptr + in.offset())); auto bottom_data = wrapper::vload(reinterpret_cast(src_bottom_ptr + in.offset())); float32x2_t top_data_f32 = f16_to_f32(top_data); float32x2_t bottom_data_f32 = f16_to_f32(bottom_data); // Calculate max data, compare top first, then bottom, to make sue the first max is recorded. const float32x2_t max_data_top = vpmax_f32(top_data_f32, top_data_f32); const float32x2_t max_data_bottom = vpmax_f32(bottom_data_f32, bottom_data_f32); const float32x2_t max_data = vmax_f32(max_data_top, max_data_bottom); *(reinterpret_cast(out.ptr())) = static_cast(vget_lane_f32(max_data, 0)); // Calculate max data indice, which will be used in max unpool. const uint32_t offset_base = offset_no_padding(in.offset(), id, *src->info(), pool_stride_x, pool_stride_y); const uint32_t offset_top = (uint32_t)(offset_base / sizeof(T)); const uint32_t offset_bottom = offset_top + in_stride_y / sizeof(T) - pad_right - pad_left; const uint32x2_t voffset_top = { offset_top, offset_top + 1u }; const uint32x2_t voffset_bottom = { offset_bottom, offset_bottom + 1u }; const uint32x2_t tmp_indices_top = vbsl_u32(vcge_f32(top_data_f32, vrev64_f32(top_data_f32)), voffset_top, vrev64_u32(voffset_top)); const uint32x2_t tmp_indices_bottom = vbsl_u32(vcge_f32(bottom_data_f32, vrev64_f32(bottom_data_f32)), voffset_bottom, vrev64_u32(voffset_bottom)); *(reinterpret_cast(indices.ptr())) = vget_lane_u32(vbsl_u32(vcge_f32(max_data_top, max_data_bottom), tmp_indices_top, tmp_indices_bottom), 0); }, in, out, indices); } #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC void pooling2_fp16_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window) { if(pool_info.pool_type == PoolingType::MAX && dst1) { pooling2_nchw_maxpool_indices(src, dst0, dst1, pool_info, window_src, window); } else { Iterator in(src, window_src); Iterator out(dst0, window); constexpr int pool_size = 2; const int pool_pad_right = pool_info.pad_stride_info.pad_right(); const int pool_pad_top = pool_info.pad_stride_info.pad_top(); const int pool_pad_left = pool_info.pad_stride_info.pad_left(); const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom(); int pool_stride_x, pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride(); const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom); const unsigned char *const src_top_ptr = src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top))); const unsigned char *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + 1)); execute_window_loop(window, [&](const Coordinates & id) { float16x4_t top_data = vld1_f16(reinterpret_cast(src_top_ptr + in.offset())); float16x4_t bottom_data = vld1_f16(reinterpret_cast(src_bottom_ptr + in.offset())); float16x4_t res = {}; // Get power of 2 in case of l2 pooling if(pool_info.pool_type == PoolingType::L2) { top_data = vmul_f16(top_data, top_data); bottom_data = vmul_f16(bottom_data, bottom_data); } if(pool_info.pool_type != PoolingType::MAX) { const float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); const float16x4_t scale_v = vdup_n_f16(scale); const float16x4_t sum_data = vadd_f16(top_data, bottom_data); res = vmul_f16(vpadd_f16(sum_data, sum_data), scale_v); } else { const float16x4_t max_data = vmax_f16(top_data, bottom_data); res = vpmax_f16(max_data, max_data); } // Calculate square-root in case of l2 pooling if(pool_info.pool_type == PoolingType::L2) { res = vinv_f16(vinvsqrt_f16(res)); } // Store result *(reinterpret_cast(out.ptr())) = vget_lane_f16(res, 0); }, in, out); } } void poolingMxN_fp16_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window) { ARM_COMPUTE_UNUSED(dst1); Iterator in(src, window_src); Iterator out(dst0, window); const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width; const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height; const int pool_pad_right = pool_info.pad_stride_info.pad_right(); const int pool_pad_top = pool_info.pad_stride_info.pad_top(); const int pool_pad_left = pool_info.pad_stride_info.pad_left(); const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride(); const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom); execute_window_loop(window, [&](const Coordinates & id) { float16_t res = 0.0f; float16x8_t vres = vdupq_n_f16(0.0f); if(pool_info.pool_type != PoolingType::MAX) { // Calculate scale const float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); // Perform pooling for(int y = 0; y < pool_size_y; ++y) { int x = 0; for(; x <= (pool_size_x - 8); x += 8) { const float16x8_t data = vld1q_f16(reinterpret_cast(in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast (src->info()->strides_in_bytes().y()))); // Get power of 2 in case of l2 pooling and accumulate if(pool_info.pool_type == PoolingType::L2) { vres = vaddq_f16(vres, vmulq_f16(data, data)); } else { vres = vaddq_f16(vres, data); } } // Leftover for loop for(; x < pool_size_x; ++x) { float16_t data = *(reinterpret_cast(in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast(src->info()->strides_in_bytes().y()))); // Get power of 2 in case of l2 pooling if(pool_info.pool_type == PoolingType::L2) { data *= data; } res += data; } } // Reduction float16x4_t tmp = vpadd_f16(vget_high_f16(vres), vget_low_f16(vres)); res += vget_lane_f16(tmp, 0); res += vget_lane_f16(tmp, 1); res += vget_lane_f16(tmp, 2); res += vget_lane_f16(tmp, 3); // Divide by scale res *= scale; } else { float16x8_t vres = vdupq_n_f16(std::numeric_limits::lowest()); res = std::numeric_limits::lowest(); for(int y = 0; y < pool_size_y; ++y) { int x = 0; for(; x <= (pool_size_x - 8); x += 8) { const float16x8_t data = vld1q_f16(reinterpret_cast(in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast (src->info()->strides_in_bytes().y()))); vres = vmaxq_f16(vres, data); } // Leftover for loop for(; x < pool_size_x; ++x) { const float16_t data = *(reinterpret_cast(in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast(src->info()->strides_in_bytes().y()))); res = std::max(res, data); } } float16x4_t tmp = vpmax_f16(vget_high_f16(vres), vget_low_f16(vres)); res = std::max(res, vget_lane_f16(tmp, 0)); res = std::max(res, vget_lane_f16(tmp, 1)); res = std::max(res, vget_lane_f16(tmp, 2)); res = std::max(res, vget_lane_f16(tmp, 3)); } // Calculate square-root in case of l2 pooling if(pool_info.pool_type == PoolingType::L2) { res = std::sqrt(res); } // Store result *(reinterpret_cast(out.ptr())) = res; }, in, out); } #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ void poolingMxN_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window) { ARM_COMPUTE_UNUSED(dst1); Iterator in(src, window_src); Iterator out(dst0, window); const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width; const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height; const int pool_pad_right = pool_info.pad_stride_info.pad_right(); const int pool_pad_top = pool_info.pad_stride_info.pad_top(); const int pool_pad_left = pool_info.pad_stride_info.pad_left(); const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride(); const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom); execute_window_loop(window, [&](const Coordinates & id) { float res = 0.0f; if(pool_info.pool_type != PoolingType::MAX) { // Calculate scale const float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); // Perform pooling float32x4_t vres = vdupq_n_f32(0.0f); for(int y = 0; y < pool_size_y; ++y) { int x = 0; for(; x <= (pool_size_x - 4); x += 4) { const float32x4_t data = vld1q_f32(reinterpret_cast(in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast (src->info()->strides_in_bytes().y()))); // Get power of 2 in case of l2 pooling and accumulate if(pool_info.pool_type == PoolingType::L2) { vres = vmlaq_f32(vres, data, data); } else { vres = vaddq_f32(vres, data); } } // Leftover for loop for(; x < pool_size_x; ++x) { float data = *(reinterpret_cast(in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast (src->info()->strides_in_bytes().y()))); // Get power of 2 in case of l2 pooling if(pool_info.pool_type == PoolingType::L2) { data *= data; } res += data; } } #if defined(__aarch64__) // Reduction operation available on 64 bit architectures only res += vaddvq_f32(vres); #else // __aarch64__ // Reduction float32x2_t tmp = vpadd_f32(vget_high_f32(vres), vget_low_f32(vres)); tmp = vpadd_f32(tmp, tmp); res += vget_lane_f32(tmp, 0); #endif // __aarch64__ // Divide by scale res *= scale; } else { float32x4_t vres = vdupq_n_f32(std::numeric_limits::lowest()); res = std::numeric_limits::lowest(); for(int y = 0; y < pool_size_y; ++y) { int x = 0; for(; x <= (pool_size_x - 4); x += 4) { const float32x4_t data = vld1q_f32(reinterpret_cast(in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast (src->info()->strides_in_bytes().y()))); vres = vmaxq_f32(vres, data); } // Leftover for loop for(; x < pool_size_x; ++x) { const float data = *(reinterpret_cast(in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast (src->info()->strides_in_bytes().y()))); res = std::max(res, data); } } #if defined(__aarch64__) // Reduction operation available on 64 bit architectures only res = std::max(vmaxvq_f32(vres), res); #else // __aarch64__ float32x2_t tmp = vpmax_f32(vget_high_f32(vres), vget_low_f32(vres)); tmp = vpmax_f32(tmp, tmp); res = std::max(res, vget_lane_f32(tmp, 0)); #endif // __aarch64__ } // Calculate square-root in case of l2 pooling if(pool_info.pool_type == PoolingType::L2) { res = std::sqrt(res); } // Store result *(reinterpret_cast(out.ptr())) = res; }, in, out); } void pooling2_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window) { if(pool_info.pool_type == PoolingType::MAX && dst1) { pooling2_nchw_maxpool_indices(src, dst0, dst1, pool_info, window_src, window); } else { Iterator in(src, window_src); Iterator out(dst0, window); constexpr int pool_size = 2; const int pool_pad_right = pool_info.pad_stride_info.pad_right(); const int pool_pad_top = pool_info.pad_stride_info.pad_top(); const int pool_pad_left = pool_info.pad_stride_info.pad_left(); const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride(); const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom); const uint8_t *const src_top_ptr = src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top))); const uint8_t *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + 1)); execute_window_loop(window, [&](const Coordinates & id) { const auto in_top_ptr = reinterpret_cast(src_top_ptr + in.offset()); const auto in_bottom_ptr = reinterpret_cast(src_bottom_ptr + in.offset()); float32x2_t top_data = vld1_f32(in_top_ptr); float32x2_t bottom_data = vld1_f32(in_bottom_ptr); float32x2_t res = {}; float final_res = 0; // Get power of 2 in case of l2 pooling if(pool_info.pool_type == PoolingType::L2) { top_data = vmul_f32(top_data, top_data); bottom_data = vmul_f32(bottom_data, bottom_data); } if(pool_info.pool_type != PoolingType::MAX) { // Calculate scale float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); const float32x2_t scale_v = vdup_n_f32(scale); // Perform pooling const float32x2_t sum_data = vadd_f32(top_data, bottom_data); res = vmul_f32(vpadd_f32(sum_data, sum_data), scale_v); } else { const float32x2_t max_data = vmax_f32(top_data, bottom_data); res = vpmax_f32(max_data, max_data); } final_res = vget_lane_f32(res, 0); // Calculate square-root in case of l2 pooling if(pool_info.pool_type == PoolingType::L2) { final_res = sqrt(final_res); } // Store result *(reinterpret_cast(out.ptr())) = final_res; }, in, out); } } void pooling3_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window) { ARM_COMPUTE_UNUSED(dst1); Iterator in(src, window_src); Iterator out(dst0, window); constexpr const int pool_size = 3; const int pool_pad_right = pool_info.pad_stride_info.pad_right(); const int pool_pad_top = pool_info.pad_stride_info.pad_top(); const int pool_pad_left = pool_info.pad_stride_info.pad_left(); const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride(); const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom); const uint8_t *const src_top_ptr = src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top))); const uint8_t *const src_middle_ptr = src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + 1)); const uint8_t *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + 2)); execute_window_loop(window, [&](const Coordinates & id) { float32x4_t top_data = vld1q_f32(reinterpret_cast(src_top_ptr + in.offset())); float32x4_t middle_data = vld1q_f32(reinterpret_cast(src_middle_ptr + in.offset())); float32x4_t bottom_data = vld1q_f32(reinterpret_cast(src_bottom_ptr + in.offset())); float32x2_t res = {}; float final_res = 0; // Get power of 2 in case of l2 pooling if(pool_info.pool_type == PoolingType::L2) { top_data = vmulq_f32(top_data, top_data); middle_data = vmulq_f32(middle_data, middle_data); bottom_data = vmulq_f32(bottom_data, bottom_data); } if(pool_info.pool_type != PoolingType::MAX) { // Calculate scale float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); const float32x2_t scale_v = vdup_n_f32(scale); // Perform pooling const float32x4_t sum_data = vaddq_f32(vaddq_f32(top_data, bottom_data), middle_data); res = vpadd_f32(vget_high_f32(vsetq_lane_f32(0.f, sum_data, 3)), vget_low_f32(sum_data)); res = vmul_f32(vpadd_f32(res, res), scale_v); } else { const float32x4_t max_data = vmaxq_f32(vmaxq_f32(top_data, bottom_data), middle_data); res = vpmax_f32(vget_high_f32(vsetq_lane_f32(-std::numeric_limits::max(), max_data, 3)), vget_low_f32(max_data)); res = vpmax_f32(res, res); } final_res = vget_lane_f32(res, 0); // Calculate square-root in case of l2 pooling if(pool_info.pool_type == PoolingType::L2) { final_res = sqrt(final_res); } // Store result *(reinterpret_cast(out.ptr())) = final_res; }, in, out); } void pooling7_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window) { ARM_COMPUTE_UNUSED(dst1); Iterator in(src, window_src); Iterator out(dst0, window); constexpr const int pool_size = 7; const int pool_pad_right = pool_info.pad_stride_info.pad_right(); const int pool_pad_top = pool_info.pad_stride_info.pad_top(); const int pool_pad_left = pool_info.pad_stride_info.pad_left(); const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride(); const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom); std::array src_ptrs{ {} }; for(int i = 0; i < pool_size; ++i) { src_ptrs[i] = src->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + i)); } execute_window_loop(window, [&](const Coordinates & id) { float32x2_t res = {}; float final_res = 0.f; if(pool_info.pool_type != PoolingType::MAX) { // Calculate scale float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); const float32x2_t scale_v = vdup_n_f32(scale); // Perform pooling float32x4x2_t data = vld2q_f32(reinterpret_cast(src_ptrs[0] + in.offset())); // Get power of 2 in case of l2 pooling if(pool_info.pool_type == PoolingType::L2) { data.val[0] = vmulq_f32(data.val[0], data.val[0]); data.val[1] = vmulq_f32(data.val[1], data.val[1]); } float32x4_t sum_data = vaddq_f32(data.val[0], vsetq_lane_f32(0.f, data.val[1], 3)); for(int i = 1; i < pool_size; ++i) { data = vld2q_f32(reinterpret_cast(src_ptrs[i] + in.offset())); // Get power of 2 in case of l2 pooling if(pool_info.pool_type == PoolingType::L2) { data.val[0] = vmulq_f32(data.val[0], data.val[0]); data.val[1] = vmulq_f32(data.val[1], data.val[1]); } sum_data = vaddq_f32(sum_data, data.val[0]); sum_data = vaddq_f32(sum_data, vsetq_lane_f32(0.f, data.val[1], 3)); } res = vpadd_f32(vget_high_f32(sum_data), vget_low_f32(sum_data)); res = vmul_f32(vpadd_f32(res, res), scale_v); } else { float32x4x2_t max_data = vld2q_f32(reinterpret_cast(src_ptrs[0] + in.offset())); for(int i = 1; i < pool_size; ++i) { const float32x4x2_t data = vld2q_f32(reinterpret_cast(src_ptrs[i] + in.offset())); max_data = vmax2q_f32(max_data, data); } res = vpmax_f32(vget_high_f32(vsetq_lane_f32(-std::numeric_limits::max(), max_data.val[1], 3)), vget_low_f32(max_data.val[1])); res = vpmax_f32(res, vpmax_f32(vget_high_f32(max_data.val[0]), vget_low_f32(max_data.val[0]))); res = vpmax_f32(res, res); } final_res = vget_lane_f32(res, 0); // Calculate square-root in case of l2 pooling if(pool_info.pool_type == PoolingType::L2) { final_res = sqrt(final_res); } // Store result *(reinterpret_cast(out.ptr())) = final_res; }, in, out); } } // namespace cpu } // namespace arm_compute #endif // ENABLE_NCHW_KERNELS