/* * Copyright (c) 2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/utils/misc/Traits.h" #include "src/core/NEON/wrapper/intrinsics/intrinsics.h" #include "src/core/cpu/kernels/pooling/neon/list.h" #include "src/core/helpers/WindowHelpers.h" #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS) namespace arm_compute { namespace cpu { namespace { void pooling2_f16_maxpool_indices(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window) { const int window_start_x = window.x().start(); const int window_end_x = window.x().end(); const int window_step_x = 8; Window window_out = window; window_out.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator in(src, window_src); Iterator out(dst0, window_out); Iterator indices(dst1, window_out); const int pool_pad_top = pool_info.pad_stride_info.pad_top(); const int pool_pad_left = pool_info.pad_stride_info.pad_left(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride(); const int pad_right = src->info()->padding().right; const int in_stride_y = static_cast(src->info()->strides_in_bytes().y()); const int in_stride_z = static_cast(src->info()->strides_in_bytes().z()); execute_window_loop(window_out, [&](const Coordinates & id) { const int idx_width = id.y() * pool_stride_x; const int idx_height = id.z() * pool_stride_y; const int pool_limit_y = pool_pad_top - idx_height; const int pool_limit_x = pool_pad_left - idx_width; const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y); const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x); const int in_x0_offset = (pool_start_x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().y()) + (pool_start_y - pool_pad_top) * static_cast(src->info()->strides_in_bytes().z()); const int in_x1_offset = (pool_start_x + 1 - pool_pad_left) * static_cast(src->info()->strides_in_bytes().y()) + (pool_start_y - pool_pad_top) * static_cast (src->info()->strides_in_bytes().z()); const int in_x2_offset = (pool_start_x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().y()) + (pool_start_y + 1 - pool_pad_top) * static_cast (src->info()->strides_in_bytes().z()); const int in_x3_offset = (pool_start_x + 1 - pool_pad_left) * static_cast(src->info()->strides_in_bytes().y()) + (pool_start_y + 1 - pool_pad_top) * static_cast (src->info()->strides_in_bytes().z()); int x_off = window_start_x; for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x) { const auto in_x0_ptr = reinterpret_cast(in.ptr() + in_x0_offset) + x_off; const auto in_x1_ptr = reinterpret_cast(in.ptr() + in_x1_offset) + x_off; const auto in_x2_ptr = reinterpret_cast(in.ptr() + in_x2_offset) + x_off; const auto in_x3_ptr = reinterpret_cast(in.ptr() + in_x3_offset) + x_off; const auto v_x0 = vld1q_f16(in_x0_ptr); const auto v_x1 = vld1q_f16(in_x1_ptr); const auto v_x2 = vld1q_f16(in_x2_ptr); const auto v_x3 = vld1q_f16(in_x3_ptr); float16x8_t vres = vmaxq_f16(vmaxq_f16(v_x2, v_x3), vmaxq_f16(v_x0, v_x1)); // Store result vst1q_f16(reinterpret_cast(out.ptr()) + x_off, vres); const uint32_t offset_base = offset_no_padding(in.offset(), id, *src->info(), pool_stride_x, pool_stride_y); const uint32_t offset_x0 = (uint32_t)offset_base / sizeof(float16_t) + x_off; const uint32_t offset_x1 = (uint32_t)offset_x0 + in_stride_y / sizeof(float16_t) - pad_right; const uint32_t offset_x2 = (uint32_t)offset_x0 + in_stride_z / sizeof(float16_t) - pad_right * src->info()->tensor_shape()[1]; const uint32_t offset_x3 = (uint32_t)offset_x2 + in_stride_y / sizeof(float16_t) - pad_right; const uint32x4_t voffset_x0_0 = { offset_x0, offset_x0 + 1, offset_x0 + 2, offset_x0 + 3 }; const uint32x4_t voffset_x0_1 = { offset_x0 + 4, offset_x0 + 5, offset_x0 + 6, offset_x0 + 7 }; const uint16x8_t voffset_x0 = vcombine_u16(vmovn_u32(voffset_x0_0), vmovn_u32(voffset_x0_1)); const uint32x4_t voffset_x1_0 = { offset_x1, offset_x1 + 1, offset_x1 + 2, offset_x1 + 3 }; const uint32x4_t voffset_x1_1 = { offset_x1 + 4, offset_x1 + 5, offset_x1 + 6, offset_x1 + 7 }; const uint16x8_t voffset_x1 = vcombine_u16(vmovn_u32(voffset_x1_0), vmovn_u32(voffset_x1_1)); const uint32x4_t voffset_x2_0 = { offset_x2, offset_x2 + 1, offset_x2 + 2, offset_x2 + 3 }; const uint32x4_t voffset_x2_1 = { offset_x2 + 4, offset_x2 + 5, offset_x2 + 6, offset_x2 + 7 }; const uint16x8_t voffset_x2 = vcombine_u16(vmovn_u32(voffset_x2_0), vmovn_u32(voffset_x2_1)); const uint32x4_t voffset_x3_0 = { offset_x3, offset_x3 + 1, offset_x3 + 2, offset_x3 + 3 }; const uint32x4_t voffset_x3_1 = { offset_x3 + 4, offset_x3 + 5, offset_x3 + 6, offset_x3 + 7 }; const uint16x8_t voffset_x3 = vcombine_u16(vmovn_u32(voffset_x3_0), vmovn_u32(voffset_x3_1)); const uint16x8_t tmp_indices0 = vbslq_u16(vcgeq_f16(v_x0, v_x1), voffset_x0, voffset_x1); const uint16x8_t tmp_indices1 = vbslq_u16(vcgeq_f16(v_x2, v_x3), voffset_x2, voffset_x3); const uint16x8_t tmp_indices2 = vbslq_u16(vcgeq_f16(vmaxq_f16(v_x0, v_x1), vmaxq_f16(v_x2, v_x3)), tmp_indices0, tmp_indices1); const uint32x4_t tmp_indeces3_0 = vmovl_u16(vget_low_u16(tmp_indices2)); const uint32x4_t tmp_indeces3_1 = vmovl_u16(vget_high_u16(tmp_indices2)); // Store indicies vst1q_u32(reinterpret_cast(indices.ptr()) + x_off, tmp_indeces3_0); vst1q_u32(reinterpret_cast(indices.ptr() + 16) + x_off, tmp_indeces3_1); } // Left-overs loop for(; x_off < window_end_x; ++x_off) { const auto x0 = *(reinterpret_cast(in.ptr() + in_x0_offset) + x_off); const auto x1 = *(reinterpret_cast(in.ptr() + in_x1_offset) + x_off); const auto x2 = *(reinterpret_cast(in.ptr() + in_x2_offset) + x_off); const auto x3 = *(reinterpret_cast(in.ptr() + in_x3_offset) + x_off); float16_t res = std::max(std::max(x2, x3), std::max(x0, x1)); // Store result *(reinterpret_cast(out.ptr()) + x_off) = res; const uint32_t offset_base = offset_no_padding(in.offset(), id, *src->info(), pool_stride_x, pool_stride_y); const uint32_t offset_x0 = (uint32_t)offset_base / sizeof(float16_t) + x_off; const uint32_t offset_x1 = (uint32_t)offset_x0 + in_stride_y / sizeof(float16_t) - pad_right; const uint32_t offset_x2 = (uint32_t)offset_x0 + in_stride_z / sizeof(float16_t) - pad_right * src->info()->tensor_shape()[1]; const uint32_t offset_x3 = (uint32_t)offset_x2 + in_stride_y / sizeof(float16_t) - pad_right; const uint32_t tmp_idx0 = (x0 >= x1) ? offset_x0 : offset_x1; const uint32_t tmp_idx1 = (x2 >= x3) ? offset_x2 : offset_x3; const uint32_t tmp_idx2 = (std::max(x0, x1) >= std::max(x2, x3)) ? tmp_idx0 : tmp_idx1; // Store indices *(reinterpret_cast(indices.ptr()) + x_off) = tmp_idx2; } }, in, out, indices); } } void poolingMxN_fp16_neon_nhwc(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window) { if(pool_info.pool_size == Size2D(2, 2) && pool_info.pool_type == PoolingType::MAX && dst1) { pooling2_f16_maxpool_indices(src, dst0, dst1, pool_info, window_src, window); } const int window_start_x = window.x().start(); const int window_end_x = window.x().end(); const int window_step_x = 8; Window window_out = window; window_out.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator in(src, window_src); Iterator out(dst0, window_out); const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width; const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height; const int pool_pad_right = pool_info.pad_stride_info.pad_right(); const int pool_pad_top = pool_info.pad_stride_info.pad_top(); const int pool_pad_left = pool_info.pad_stride_info.pad_left(); const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride(); const int upper_bound_w = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = src->info()->dimension(2) + (pool_info.exclude_padding ? 0 : pool_pad_bottom); float16x8_t vres; execute_window_loop(window_out, [&](const Coordinates & id) { const int idx_width = id.y() * pool_stride_x; const int idx_height = id.z() * pool_stride_y; const int pool_limit_y = pool_pad_top - idx_height; const int pool_limit_x = pool_pad_left - idx_width; const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y); const int pool_end_y = std::min(pool_size_y, window_src.z().end() + pool_limit_y); const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x); const int pool_end_x = std::min(pool_size_x, window_src.y().end() + pool_limit_x); int x_off = window_start_x; for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x) { if(pool_info.pool_type != PoolingType::MAX) { // Calculate scale const float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); const float16x8_t scale_v = vdupq_n_f16(scale); // Perform pooling vres = vdupq_n_f16(0.0f); for(int y = pool_start_y; y < pool_end_y; ++y) { for(int x = pool_start_x; x < pool_end_x; ++x) { const float16x8_t data = vld1q_f16(reinterpret_cast(in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast (src->info()->strides_in_bytes().z())) + x_off); // Get power of 2 in case of l2 pooling and accumulate if(pool_info.pool_type == PoolingType::L2) { vres = vaddq_f16(vres, vmulq_f16(data, data)); } else { vres = vaddq_f16(vres, data); } } } // Divide by scale vres = vmulq_f16(vres, scale_v); } else { vres = vdupq_n_f16(std::numeric_limits::lowest()); for(int y = pool_start_y; y < pool_end_y; ++y) { for(int x = pool_start_x; x < pool_end_x; ++x) { const float16x8_t data = vld1q_f16(reinterpret_cast(in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast (src->info()->strides_in_bytes().z())) + x_off); vres = vmaxq_f16(vres, data); } } } // Calculate square-root in case of l2 pooling if(pool_info.pool_type == PoolingType::L2) { float16x8_t sqrt_reciprocal = vrsqrteq_f16(vres); vres = vmulq_f16(vres, vmulq_f16(vrsqrtsq_f16(vmulq_f16(vres, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal)); } // Store result vst1q_f16(reinterpret_cast(out.ptr()) + x_off, vres); } // Left-overs loop for(; x_off < window_end_x; ++x_off) { float16_t res = 0.0f; if(pool_info.pool_type != PoolingType::MAX) { // Calculate scale const float16_t scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); for(int y = pool_start_y; y < pool_end_y; ++y) { for(int x = pool_start_x; x < pool_end_x; ++x) { const float data = *(reinterpret_cast(in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast (src->info()->strides_in_bytes().z())) + x_off); // Get power of 2 in case of l2 pooling and accumulate if(pool_info.pool_type == PoolingType::L2) { res += data * data; } else { res += data; } } } // Divide by scale res *= scale; } else { res = std::numeric_limits::lowest(); for(int y = pool_start_y; y < pool_end_y; ++y) { for(int x = pool_start_x; x < pool_end_x; ++x) { const float16_t data = *(reinterpret_cast(in.ptr() + (x - pool_pad_left) * static_cast(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast (src->info()->strides_in_bytes().z())) + x_off); res = std::max(res, data); } } } // Calculate square-root in case of l2 pooling if(pool_info.pool_type == PoolingType::L2) { res = std::sqrt(res); } // Store result *(reinterpret_cast(out.ptr()) + x_off) = res; } }, in, out); } } // namespace cpu } // namespace arm_compute #endif /* defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS) */