/* * Copyright (c) 2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef SRC_CORE_SVE_KERNELS_ELEMENTWISE_LIST_H #define SRC_CORE_SVE_KERNELS_ELEMENTWISE_LIST_H #if defined(__ARM_FEATURE_SVE) #include "arm_compute/core/Types.h" #include "arm_compute/core/utils/misc/Traits.h" #include "src/core/NEON/SVEMath.h" #include "src/core/NEON/wrapper/intrinsics/intrinsics.h" #include "src/core/NEON/wrapper/svtraits.h" #include namespace arm_compute { namespace cpu { namespace sve { using namespace arm_compute::wrapper; template inline VectorType elementwise_pow(svbool_t &pg, const VectorType &a, const VectorType &b) { return svpow_z(pg, a, b); } template <> inline svint32_t elementwise_pow(svbool_t &pg, const svint32_t &a, const svint32_t &b) { return svcvt_s32_z(pg, svpow_z(pg, svcvt_f32_z(pg, a), svcvt_f32_z(pg, b))); } template inline VectorType elementwise_div(svbool_t &pg, const VectorType &a, const VectorType &b) { return svdiv_z(pg, a, b); } template <> inline svint32_t elementwise_div(svbool_t &pg, const svint32_t &a, const svint32_t &b) { return svcvt_s32_z(pg, svdiv_z(pg, svcvt_f32_z(pg, a), svcvt_f32_z(pg, b))); } template inline VectorType elementwise_arithmetic_op(svbool_t &pg, const VectorType &a, const VectorType &b, ArithmeticOperation op) { using ScalarType = typename sve_scalar::type; VectorType res{}; switch(op) { case ArithmeticOperation::MAX: res = svmax_z(pg, a, b); break; case ArithmeticOperation::MIN: res = svmin_z(pg, a, b); break; case ArithmeticOperation::SQUARED_DIFF: { const auto tmp = svsub_z(pg, a, b); res = svmul_z(pg, tmp, tmp); break; } case ArithmeticOperation::PRELU: { const auto zero = svdup_n(ScalarType(0)); const auto tmp = svmul_z(pg, a, b); const auto gt = svcmpgt(pg, a, zero); res = svsel(gt, a, tmp); break; } case ArithmeticOperation::DIV: { res = elementwise_div(pg, a, b); break; } case ArithmeticOperation::POWER: { res = elementwise_pow(pg, a, b); break; } default: ARM_COMPUTE_ERROR("NOT_SUPPORTED!"); } return res; } template inline svbool_t narrow_to_byte_predicate(svbool_t pg) { const auto all_false = svpfalse(); switch(bytewidth) { case 8: pg = svuzp1_b32(pg, all_false); /* fall through */ case 4: pg = svuzp1_b16(pg, all_false); /* fall through */ case 2: pg = svuzp1_b8(pg, all_false); /* fall through */ default: break; } return pg; } template inline OutputVectorType elementwise_comparison_op(svbool_t &pg, const InputVectorType &a, const InputVectorType &b, ComparisonOperation op) { svbool_t selection_vector{}; switch(op) { case ComparisonOperation::Equal: selection_vector = svcmpeq(pg, a, b); break; case ComparisonOperation::NotEqual: selection_vector = svcmpne(pg, a, b); break; case ComparisonOperation::Greater: selection_vector = svcmpgt(pg, a, b); break; case ComparisonOperation::GreaterEqual: selection_vector = svcmpge(pg, a, b); break; case ComparisonOperation::Less: selection_vector = svcmplt(pg, a, b); break; case ComparisonOperation::LessEqual: selection_vector = svcmple(pg, a, b); break; default: ARM_COMPUTE_ERROR("NOT_SUPPORTED!"); } using InputScalarType = typename sve_scalar::type; selection_vector = narrow_to_byte_predicate(selection_vector); using OutputScalarType = typename sve_scalar::type; const auto false_vector = svdup_n(static_cast((uint32_t)0)); const auto true_vector = svdup_n(static_cast(~(uint32_t)0)); auto ret = svsel(selection_vector, true_vector, false_vector); return ret; } template struct LoopArguments { OperatorType op; const InputScalarType *input1_ptr; const InputScalarType *input2_ptr; OutputScalarType *output_ptr; }; template struct BroadcastLoopArguments { OperatorType op; const InputScalarType *input1_ptr; InputScalarType broadcast_value; OutputScalarType *output_ptr; bool reorder; }; template inline void arithmetic_op_loop(svbool_t pg, const LoopArguments &args) { const auto in1 = svld1(pg, args.input1_ptr); const auto in2 = svld1(pg, args.input2_ptr); const auto res = elementwise_arithmetic_op::type>(pg, in1, in2, args.op); svst1(pg, args.output_ptr, res); } template inline void arithmetic_op_broadcast_loop(svbool_t pg, const BroadcastLoopArguments &args) { const auto non_broadcast_vector = svld1(pg, args.input1_ptr); const auto broadcast_vector = svdup_n(args.broadcast_value); const auto in1 = args.reorder ? broadcast_vector : non_broadcast_vector; const auto in2 = args.reorder ? non_broadcast_vector : broadcast_vector; const auto res = elementwise_arithmetic_op::type>(pg, in1, in2, args.op); svst1(pg, args.output_ptr, res); } template inline void comparison_op_loop(svbool_t pg, const LoopArguments &args) { const auto in1 = svld1(pg, args.input1_ptr); const auto in2 = svld1(pg, args.input2_ptr); const auto res = elementwise_comparison_op::type, typename sve_vector::type>(pg, in1, in2, args.op); const svbool_t output_pg = narrow_to_byte_predicate(pg); svst1(output_pg, args.output_ptr, res); } template inline void comparison_op_broadcast_loop(svbool_t pg, const BroadcastLoopArguments &args) { const auto non_broadcast_vector = svld1(pg, args.input1_ptr); const auto broadcast_vector = svdup_n(args.broadcast_value); const auto in1 = args.reorder ? broadcast_vector : non_broadcast_vector; const auto in2 = args.reorder ? non_broadcast_vector : broadcast_vector; const auto res = elementwise_comparison_op::type, typename sve_vector::type>(pg, in1, in2, args.op); const svbool_t output_pg = narrow_to_byte_predicate(pg); svst1(output_pg, args.output_ptr, res); } template using LoopFuncType = void (*)(svbool_t, const LoopArguments &); template using BroadcastLoopFuncType = void (*)(svbool_t, const BroadcastLoopArguments &); template ::type, typename OutputScalarType = typename sve_scalar::type> void elementwise_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, OperatorType op, LoopFuncType func, BroadcastLoopFuncType broadcast_func) { const auto all_true_pg = svptrue(); // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x(); if(is_broadcast_across_x) { const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1; // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates &) { auto output_ptr = reinterpret_cast(output.ptr()); const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const InputScalarType broadcast_value = *reinterpret_cast(broadcast_input.ptr()); int x = window_start_x; svbool_t pg = svwhilelt(x, window_end_x); do { broadcast_func(pg, { op, non_broadcast_input_ptr + x, broadcast_value, output_ptr + x, !is_broadcast_input_2 }); x += svcnt(); pg = svwhilelt(x, window_end_x); } while(svptest_any(all_true_pg, pg)); }, broadcast_input, non_broadcast_input, output); } else { // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates &) { auto output_ptr = reinterpret_cast(output.ptr()); const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); int x = window_start_x; svbool_t pg = svwhilelt(x, window_end_x); do { func(pg, { op, input1_ptr + x, input2_ptr + x, output_ptr + x }); x += svcnt(); pg = svwhilelt(x, window_end_x); } while(svptest_any(all_true_pg, pg)); }, input1, input2, output); } } template void elementwise_arithmetic_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { using VectorType = typename sve_vector::type; elementwise_op(in1, in2, out, window, op, &arithmetic_op_loop, &arithmetic_op_broadcast_loop); } template void elementwise_comparison_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { static_assert(sizeof(InputScalarType) >= sizeof(OutputScalarType), "input data type's width should be equal to or greater than output data type's width"); using InputVectorType = typename sve_vector::type; using OutputVectorType = typename sve_vector::type; elementwise_op(in1, in2, out, window, op, &comparison_op_loop, &comparison_op_broadcast_loop); } } // namespace sve } // namespace cpu } // namespace arm_compute #endif // defined(__ARM_FEATURE_SVE) #endif /* SRC_CORE_SVE_KERNELS_ELEMENTWISE_LIST_H */