/* * Copyright (c) 2020-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/utils/misc/Traits.h" #include "src/core/NEON/wrapper/intrinsics/intrinsics.h" #include "src/core/helpers/WindowHelpers.h" namespace arm_compute { namespace cpu { void add_qasymm8_signed_neon(const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window) { ARM_COMPUTE_UNUSED(policy); // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(src0->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const int window_step_x = 16; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = src0->info()->tensor_shape().x() != src1->info()->tensor_shape().x(); const UniformQuantizationInfo iq1_info = src0->info()->quantization_info().uniform(); const UniformQuantizationInfo iq2_info = src1->info()->quantization_info().uniform(); const UniformQuantizationInfo oq_info = dst->info()->quantization_info().uniform(); const float32x4_t invvscaleo = vdupq_n_f32(1.f / oq_info.scale); const float32x4_t voffseto = vdupq_n_f32(oq_info.offset); if(is_broadcast_across_x) { const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? src1 : src0; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? src1 : src0; const UniformQuantizationInfo broadcast_qinfo = broadcast_tensor->info()->quantization_info().uniform(); const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform(); const float32x4_t vscale1 = is_broadcast_input_2 ? vdupq_n_f32(iq1_info.scale) : vdupq_n_f32(iq2_info.scale); const float32x4_t vscale2 = is_broadcast_input_2 ? vdupq_n_f32(iq2_info.scale) : vdupq_n_f32(iq1_info.scale); const int32x4_t voffset1 = is_broadcast_input_2 ? vdupq_n_s32(iq1_info.offset) : vdupq_n_s32(iq2_info.offset); const int32x4_t voffset2 = is_broadcast_input_2 ? vdupq_n_s32(iq2_info.offset) : vdupq_n_s32(iq1_info.offset); // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(dst, win); execute_window_loop(win, [&](const Coordinates &) { const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); const int8_t broadcast_value = *reinterpret_cast(broadcast_input.ptr()); const int8x16_t broadcast_value_vec = vdupq_n_s8(broadcast_value); const auto bf_0 = vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(broadcast_value_vec)))), voffset2)), vscale2); const auto bf_1 = vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(broadcast_value_vec)))), voffset2)), vscale2); const auto bf_2 = vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(broadcast_value_vec)))), voffset2)), vscale2); const auto bf_3 = vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(broadcast_value_vec)))), voffset2)), vscale2); const float bfs = static_cast(broadcast_value - broadcast_qinfo.offset) * broadcast_qinfo.scale; // Compute S elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const int8x16_t a = vld1q_s8(non_broadcast_input_ptr + x); const auto af_0 = vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(a)))), voffset1)), vscale1); const auto af_1 = vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(a)))), voffset1)), vscale1); const auto af_2 = vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(a)))), voffset1)), vscale1); const auto af_3 = vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(a)))), voffset1)), vscale1); int32x4_t rf_0{}; int32x4_t rf_1{}; int32x4_t rf_2{}; int32x4_t rf_3{}; #ifdef __aarch64__ rf_0 = vcvtnq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af_0, bf_0), invvscaleo)); rf_1 = vcvtnq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af_1, bf_1), invvscaleo)); rf_2 = vcvtnq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af_2, bf_2), invvscaleo)); rf_3 = vcvtnq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af_3, bf_3), invvscaleo)); #else //__aarch64__ rf_0 = vcvtq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af_0, bf_0), invvscaleo)); rf_1 = vcvtq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af_1, bf_1), invvscaleo)); rf_2 = vcvtq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af_2, bf_2), invvscaleo)); rf_3 = vcvtq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af_3, bf_3), invvscaleo)); #endif //__aarch64__ const int8x8_t pa = vqmovn_s16(vcombine_s16(vqmovn_s32(rf_0), vqmovn_s32(rf_1))); const int8x8_t pb = vqmovn_s16(vcombine_s16(vqmovn_s32(rf_2), vqmovn_s32(rf_3))); vst1q_s8(output_ptr + x, vcombine_s8(pa, pb)); } // Compute left-over elements for(; x < window_end_x; ++x) { const float afs = static_cast(*(non_broadcast_input_ptr + x) - non_broadcast_qinfo.offset) * non_broadcast_qinfo.scale; *(output_ptr + x) = quantize_qasymm8_signed((afs + bfs), oq_info); } }, broadcast_input, non_broadcast_input, output); } else { // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(src0, input1_win); Iterator input2(src1, input2_win); Iterator output(dst, win); const float32x4_t vscale1 = vdupq_n_f32(iq1_info.scale); const float32x4_t vscale2 = vdupq_n_f32(iq2_info.scale); const int32x4_t voffset1 = vdupq_n_s32(iq1_info.offset); const int32x4_t voffset2 = vdupq_n_s32(iq2_info.offset); execute_window_loop(win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); // Compute S elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const int8x16_t a = vld1q_s8(input1_ptr + x); const int8x16_t b = vld1q_s8(input2_ptr + x); const auto af_0 = vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(a)))), voffset1)), vscale1); const auto af_1 = vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(a)))), voffset1)), vscale1); const auto af_2 = vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(a)))), voffset1)), vscale1); const auto af_3 = vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(a)))), voffset1)), vscale1); const auto bf_0 = vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(b)))), voffset2)), vscale2); const auto bf_1 = vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(b)))), voffset2)), vscale2); const auto bf_2 = vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(b)))), voffset2)), vscale2); const auto bf_3 = vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(b)))), voffset2)), vscale2); int32x4_t rf_0{}; int32x4_t rf_1{}; int32x4_t rf_2{}; int32x4_t rf_3{}; #ifdef __aarch64__ rf_0 = vcvtnq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af_0, bf_0), invvscaleo)); rf_1 = vcvtnq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af_1, bf_1), invvscaleo)); rf_2 = vcvtnq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af_2, bf_2), invvscaleo)); rf_3 = vcvtnq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af_3, bf_3), invvscaleo)); #else //__aarch64__ rf_0 = vcvtq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af_0, bf_0), invvscaleo)); rf_1 = vcvtq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af_1, bf_1), invvscaleo)); rf_2 = vcvtq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af_2, bf_2), invvscaleo)); rf_3 = vcvtq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af_3, bf_3), invvscaleo)); #endif //__aarch64__ const int8x8_t pa = vqmovn_s16(vcombine_s16(vqmovn_s32(rf_0), vqmovn_s32(rf_1))); const int8x8_t pb = vqmovn_s16(vcombine_s16(vqmovn_s32(rf_2), vqmovn_s32(rf_3))); vst1q_s8(output_ptr + x, vcombine_s8(pa, pb)); } // Compute left-over elements for(; x < window_end_x; ++x) { const float afs = static_cast((*(input1_ptr + x)) - iq1_info.offset) * iq1_info.scale; const float bfs = static_cast((*(input2_ptr + x)) - iq2_info.offset) * iq2_info.scale; *(output_ptr + x) = quantize_qasymm8_signed((afs + bfs), dst->info()->quantization_info()); } }, input1, input2, output); } } } // namespace cpu } // namespace arm_compute