/* * Copyright (c) 2020-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Window.h" #include "src/core/common/Validate.h" #include #include #if defined(__ARM_FEATURE_SVE2) #include "src/core/NEON/SVEAsymm.h" #include "src/core/NEON/SVEMath.h" #include namespace arm_compute { namespace cpu { void qasymm8_sve_activation(const ITensor *src, ITensor *dst, const ActivationLayerInfo &act_info, const Window &window) { const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const ActivationLayerInfo::ActivationFunction act = act_info.activation(); Window win_collapsed = window.collapse_if_possible(window, Window::DimZ); win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input(src, win_collapsed); Iterator output(dst, win_collapsed); const UniformQuantizationInfo qi_in = src->info()->quantization_info().uniform(); const UniformQuantizationInfo qi_out = dst->info()->quantization_info().uniform(); const auto va = svdup_n_u8(quantize_qasymm8(act_info.a(), qi_in)); const auto vb = svdup_n_u8(quantize_qasymm8(act_info.b(), qi_in)); const auto const_0 = quantize_qasymm8(0.f, qi_in); const auto vconst_0 = svdup_n_u8(const_0); const auto vconst_1 = svdup_n_f32(1.f); const auto va_f32 = svdup_n_f32(act_info.a()); const auto vb_f32 = svdup_n_f32(act_info.b()); const auto const_6_f32 = svdup_n_f32(6.f); const auto const_0_f32 = svdup_n_f32(0.f); const auto const_3_f32 = svdup_n_f32(3.f); const auto const_inv_6_f32 = svdup_n_f32(0.166666667f); // Initialise scale/offset for re-quantization bool requant = true; if(qi_in.scale == qi_out.scale && qi_in.offset == qi_out.offset) { requant = false; } float s = qi_in.scale / qi_out.scale; float o = -qi_in.offset * s + qi_out.offset; auto vs = svdup_n_f32(s); auto vo = svdup_n_f32(o); // Initialise scale/offset for re-quantization with int32_t const auto voffset_in = svdup_n_s32(qi_in.offset); int32_t s_s32 = round(s * (1 << 8), arm_compute::RoundingPolicy::TO_NEAREST_EVEN); int32_t o_s32 = round(o * (1 << 8), arm_compute::RoundingPolicy::TO_NEAREST_EVEN); const auto vs_s32 = svdup_n_s32(s_s32); const auto vo_s32 = svdup_n_s32(o_s32); // Initialise scale/offset for re-quantization for leaky relu int32_t s_leaky_s32 = round(s * act_info.a() * (1 << 8), arm_compute::RoundingPolicy::TO_NEAREST_EVEN); int32_t o_leaky_s32 = round((-qi_in.offset * s * act_info.a() + qi_out.offset) * (1 << 8), arm_compute::RoundingPolicy::TO_NEAREST_EVEN); const auto vs_leaky_s32 = svdup_n_s32(s_leaky_s32); const auto vo_leaky_s32 = svdup_n_s32(o_leaky_s32); execute_window_loop(win_collapsed, [&](const Coordinates &) { const auto input_ptr = reinterpret_cast(input.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); svuint8_t tmp; int x = window_start_x; svbool_t pg = svwhilelt_b8(x, window_end_x); do { const auto vin = svld1_u8(pg, input_ptr + x); if(act == ActivationLayerInfo::ActivationFunction::RELU) { // Perform activation tmp = svmax_u8_z(pg, vconst_0, vin); // Re-quantize to new output space tmp = requant ? svmla_qasymm8_z(pg, tmp, vs, vo) : tmp; } else if(act == ActivationLayerInfo::ActivationFunction::BOUNDED_RELU) { // Perform activation tmp = svmin_u8_z(pg, va, svmax_u8_z(pg, vconst_0, vin)); // Re-quantize to new output space tmp = requant ? svmla_qasymm8_z(pg, tmp, vs, vo) : tmp; } else if(act == ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU) { // Perform activation tmp = svmin_u8_z(pg, va, svmax_u8_z(pg, vb, vin)); // Re-quantize to new output space tmp = svmla_qasymm8_z(pg, tmp, vs, vo); } else if(act == ActivationLayerInfo::ActivationFunction::LOGISTIC) { // De-quantize const auto vin_deq = svdequantize_z(pg, vin, qi_in); // Perform activation const svfloat32x4_t tmp_dep = { { { svdiv_f32_z(pg, vconst_1, svadd_f32_z(pg, vconst_1, svexp_f32_z(pg, svneg_f32_z(pg, svget4_f32(vin_deq, 0))))), svdiv_f32_z(pg, vconst_1, svadd_f32_z(pg, vconst_1, svexp_f32_z(pg, svneg_f32_z(pg, svget4_f32(vin_deq, 1))))), svdiv_f32_z(pg, vconst_1, svadd_f32_z(pg, vconst_1, svexp_f32_z(pg, svneg_f32_z(pg, svget4_f32(vin_deq, 2))))), svdiv_f32_z(pg, vconst_1, svadd_f32_z(pg, vconst_1, svexp_f32_z(pg, svneg_f32_z(pg, svget4_f32(vin_deq, 3))))), } } }; // Re-quantize to new output space tmp = svquantize_z(pg, tmp_dep, qi_out); } else if(act == ActivationLayerInfo::ActivationFunction::TANH) { // De-quantize const auto vin_deq = svdequantize_z(pg, vin, qi_in); // Perform activation const svfloat32x4_t tmp_dep = { { { svmul_f32_z(pg, va_f32, svtanh_f32_z(pg, svmul_f32_z(pg, svget4_f32(vin_deq, 0), vb_f32))), svmul_f32_z(pg, va_f32, svtanh_f32_z(pg, svmul_f32_z(pg, svget4_f32(vin_deq, 1), vb_f32))), svmul_f32_z(pg, va_f32, svtanh_f32_z(pg, svmul_f32_z(pg, svget4_f32(vin_deq, 2), vb_f32))), svmul_f32_z(pg, va_f32, svtanh_f32_z(pg, svmul_f32_z(pg, svget4_f32(vin_deq, 3), vb_f32))), } } }; // Re-quantize to new output space tmp = svquantize_z(pg, tmp_dep, qi_out); } else if(act == ActivationLayerInfo::ActivationFunction::HARD_SWISH) { // De-quantize const auto vin_deq = svdequantize_z(pg, vin, qi_in); // Perform activation const svfloat32x4_t tmp_dep = { { { svmul_f32_z(pg, svget4_f32(vin_deq, 0), svmul_f32_z(pg, const_inv_6_f32, svmin_f32_z(pg, const_6_f32, svmax_f32_z(pg, const_0_f32, svadd_f32_z(pg, svget4_f32(vin_deq, 0), const_3_f32))))), svmul_f32_z(pg, svget4_f32(vin_deq, 1), svmul_f32_z(pg, const_inv_6_f32, svmin_f32_z(pg, const_6_f32, svmax_f32_z(pg, const_0_f32, svadd_f32_z(pg, svget4_f32(vin_deq, 1), const_3_f32))))), svmul_f32_z(pg, svget4_f32(vin_deq, 2), svmul_f32_z(pg, const_inv_6_f32, svmin_f32_z(pg, const_6_f32, svmax_f32_z(pg, const_0_f32, svadd_f32_z(pg, svget4_f32(vin_deq, 2), const_3_f32))))), svmul_f32_z(pg, svget4_f32(vin_deq, 3), svmul_f32_z(pg, const_inv_6_f32, svmin_f32_z(pg, const_6_f32, svmax_f32_z(pg, const_0_f32, svadd_f32_z(pg, svget4_f32(vin_deq, 3), const_3_f32))))), } } }; // Re-quantize to new output space tmp = svquantize_z(pg, tmp_dep, qi_out); } else if(act == ActivationLayerInfo::ActivationFunction::LEAKY_RELU) { svbool_t p0, p1, p2, p3; svint32x4_t tmp_dep; // Expand to int32 const svint32x4_t vin_s32 = { { { svreinterpret_s32_u32(svmovlb_u32(svmovlb_u16(vin))), svreinterpret_s32_u32(svmovlt_u32(svmovlb_u16(vin))), svreinterpret_s32_u32(svmovlb_u32(svmovlt_u16(vin))), svreinterpret_s32_u32(svmovlt_u32(svmovlt_u16(vin))), } } }; // Compare elements to input offset if(qi_in.scale >= 0) { p0 = svcmplt_s32(pg, svget4_s32(vin_s32, 0), voffset_in); p1 = svcmplt_s32(pg, svget4_s32(vin_s32, 1), voffset_in); p2 = svcmplt_s32(pg, svget4_s32(vin_s32, 2), voffset_in); p3 = svcmplt_s32(pg, svget4_s32(vin_s32, 3), voffset_in); } else { p0 = svcmpgt_s32(pg, svget4_s32(vin_s32, 0), voffset_in); p1 = svcmpgt_s32(pg, svget4_s32(vin_s32, 1), voffset_in); p2 = svcmpgt_s32(pg, svget4_s32(vin_s32, 2), voffset_in); p3 = svcmpgt_s32(pg, svget4_s32(vin_s32, 3), voffset_in); } // Multiply negative elements and requantize if necessary if(requant) { tmp_dep = svcreate4_s32( svasr_n_s32_m(pg, svmla_s32_m(pg, svsel(p0, vo_leaky_s32, vo_s32), svget4_s32(vin_s32, 0), svsel(p0, vs_leaky_s32, vs_s32)), 8), svasr_n_s32_m(pg, svmla_s32_m(pg, svsel(p1, vo_leaky_s32, vo_s32), svget4_s32(vin_s32, 1), svsel(p1, vs_leaky_s32, vs_s32)), 8), svasr_n_s32_m(pg, svmla_s32_m(pg, svsel(p2, vo_leaky_s32, vo_s32), svget4_s32(vin_s32, 2), svsel(p2, vs_leaky_s32, vs_s32)), 8), svasr_n_s32_m(pg, svmla_s32_m(pg, svsel(p3, vo_leaky_s32, vo_s32), svget4_s32(vin_s32, 3), svsel(p3, vs_leaky_s32, vs_s32)), 8)); } else { tmp_dep = svcreate4_s32( svasr_n_s32_m(p0, svmad_s32_m(p0, svget4_s32(vin_s32, 0), vs_leaky_s32, vo_leaky_s32), 8), svasr_n_s32_m(p1, svmad_s32_m(p1, svget4_s32(vin_s32, 1), vs_leaky_s32, vo_leaky_s32), 8), svasr_n_s32_m(p2, svmad_s32_m(p2, svget4_s32(vin_s32, 2), vs_leaky_s32, vo_leaky_s32), 8), svasr_n_s32_m(p3, svmad_s32_m(p3, svget4_s32(vin_s32, 3), vs_leaky_s32, vo_leaky_s32), 8)); } // Convert uint32 vectors to uint16 vectors (with saturation) const auto v_low_u16 = svqxtunt_s32(svqxtunb_s32(svget4_s32(tmp_dep, 0)), svget4_s32(tmp_dep, 1)); const auto v_high_u16 = svqxtunt_s32(svqxtunb_s32(svget4_s32(tmp_dep, 2)), svget4_s32(tmp_dep, 3)); // convert uint16 vectors to uint8 vectors (with saturation) tmp = svqxtnt_u16(svqxtnb_u16(v_low_u16), v_high_u16); } else { ARM_COMPUTE_ERROR("Unsupported activation function"); } svst1_u8(pg, output_ptr + x, tmp); x += svcntb(); pg = svwhilelt_b8(x, window_end_x); } while(svptest_any(svptrue_b8(), pg)); }, input, output); } } // namespace cpu } // namespace arm_compute #endif /* defined(__ARM_FEATURE_SVE2) */