/* * Copyright (c) 2020-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Window.h" #include "src/core/NEON/NEAsymm.h" #include "src/core/NEON/NEMath.h" #include "src/core/NEON/wrapper/wrapper.h" #include #include #include namespace arm_compute { namespace cpu { void qasymm8_neon_activation(const ITensor *src, ITensor *dst, const ActivationLayerInfo &act_info, const Window &window) { constexpr int window_step_x = 16; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const ActivationLayerInfo::ActivationFunction act = act_info.activation(); Window win_collapsed = window.collapse_if_possible(window, Window::DimZ); win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input(src, win_collapsed); Iterator output(dst, win_collapsed); const UniformQuantizationInfo qi_in = src->info()->quantization_info().uniform(); const UniformQuantizationInfo qi_out = dst->info()->quantization_info().uniform(); const qasymm8x16_t va = vdupq_n_u8(quantize_qasymm8(act_info.a(), qi_in)); const qasymm8x16_t vb = vdupq_n_u8(quantize_qasymm8(act_info.b(), qi_in)); const qasymm8_t a = quantize_qasymm8(act_info.a(), qi_in); const qasymm8_t b = quantize_qasymm8(act_info.b(), qi_in); const qasymm8_t const_0 = quantize_qasymm8(0.f, qi_in); const qasymm8x16_t vconst_0 = vdupq_n_u8(const_0); const auto vconst_1 = vdupq_n_f32(1.f); #ifndef __aarch64__ const auto vconst_0_f32 = vdupq_n_f32(0); #endif // __aarch64__ const float32x4_t va_f32 = vdupq_n_f32(act_info.a()); const float32x4_t vb_f32 = vdupq_n_f32(act_info.b()); const float a_f32 = act_info.a(); const float b_f32 = act_info.b(); const auto const_6_f32 = vdupq_n_f32(6.f); const auto const_0_f32 = vdupq_n_f32(0.f); const auto const_3_f32 = vdupq_n_f32(3.f); const auto const_inv_6_f32 = vdupq_n_f32(0.166666667f); // Initialise scale/offset for re-quantization float s = qi_in.scale / qi_out.scale; float o = -qi_in.offset * s + qi_out.offset; float32x4_t vs = vdupq_n_f32(s); float32x4_t vo = vdupq_n_f32(o); execute_window_loop(win_collapsed, [&](const Coordinates &) { const auto input_ptr = reinterpret_cast(input.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); wrapper::traits::neon_bitvector_t tmp; // Compute S elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto vin = wrapper::vloadq(input_ptr + x); if(act == ActivationLayerInfo::ActivationFunction::RELU) { // Perform activation tmp = vmaxq_u8(vconst_0, vin); // Re-quantize to new output space tmp = vmlaq_qasymm8(tmp, vs, vo); } else if(act == ActivationLayerInfo::ActivationFunction::BOUNDED_RELU) { // Perform activation tmp = vminq_u8(va, vmaxq_u8(vconst_0, vin)); // Re-quantize to new output space tmp = vmlaq_qasymm8(tmp, vs, vo); } else if(act == ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU) { // Perform activation tmp = vminq_u8(va, vmaxq_u8(vb, vin)); // Re-quantize to new output space tmp = vmlaq_qasymm8(tmp, vs, vo); } else if(act == ActivationLayerInfo::ActivationFunction::LOGISTIC) { // De-quantize const auto vin_deq = vdequantize(vin, qi_in); // Perform activation const float32x4x4_t tmp_dep = { { wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[0])))), wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[1])))), wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[2])))), wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[3])))), } }; // Re-quantize to new output space tmp = vquantize(tmp_dep, qi_out); } else if(act == ActivationLayerInfo::ActivationFunction::TANH) { // De-quantize const auto vin_deq = vdequantize(vin, qi_in); // Perform activation const float32x4x4_t tmp_dep = { { wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[0], vb_f32))), wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[1], vb_f32))), wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[2], vb_f32))), wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[3], vb_f32))), } }; // Re-quantize to new output space tmp = vquantize(tmp_dep, qi_out); } else if(act == ActivationLayerInfo::ActivationFunction::HARD_SWISH) { // De-quantize const auto vin_deq = vdequantize(vin, qi_in); // Perform activation const float32x4x4_t tmp_dep = { { wrapper::vmul(vin_deq.val[0], wrapper::vmul(const_inv_6_f32, wrapper::vmin(const_6_f32, wrapper::vmax(const_0_f32, wrapper::vadd(vin_deq.val[0], const_3_f32))))), wrapper::vmul(vin_deq.val[1], wrapper::vmul(const_inv_6_f32, wrapper::vmin(const_6_f32, wrapper::vmax(const_0_f32, wrapper::vadd(vin_deq.val[1], const_3_f32))))), wrapper::vmul(vin_deq.val[2], wrapper::vmul(const_inv_6_f32, wrapper::vmin(const_6_f32, wrapper::vmax(const_0_f32, wrapper::vadd(vin_deq.val[2], const_3_f32))))), wrapper::vmul(vin_deq.val[3], wrapper::vmul(const_inv_6_f32, wrapper::vmin(const_6_f32, wrapper::vmax(const_0_f32, wrapper::vadd(vin_deq.val[3], const_3_f32))))), } }; // Re-quantize to new output space tmp = vquantize(tmp_dep, qi_out); } else if(act == ActivationLayerInfo::ActivationFunction::LEAKY_RELU) { const auto vin_deq = vdequantize(vin, qi_in); #ifdef __aarch64__ const uint32x4x4_t pos_mask = { { wrapper::vcgtz(vin_deq.val[0]), wrapper::vcgtz(vin_deq.val[1]), wrapper::vcgtz(vin_deq.val[2]), wrapper::vcgtz(vin_deq.val[3]), } }; #else // __aarch64__ const uint32x4x4_t pos_mask = { { wrapper::vcgt(vin_deq.val[0], vconst_0_f32), wrapper::vcgt(vin_deq.val[1], vconst_0_f32), wrapper::vcgt(vin_deq.val[2], vconst_0_f32), wrapper::vcgt(vin_deq.val[3], vconst_0_f32), } }; #endif // __aarch64__ const float32x4x4_t tmp_dep = { { wrapper::vbsl(pos_mask.val[0], vin_deq.val[0], wrapper::vmul(va_f32, vin_deq.val[0])), wrapper::vbsl(pos_mask.val[1], vin_deq.val[1], wrapper::vmul(va_f32, vin_deq.val[1])), wrapper::vbsl(pos_mask.val[2], vin_deq.val[2], wrapper::vmul(va_f32, vin_deq.val[2])), wrapper::vbsl(pos_mask.val[3], vin_deq.val[3], wrapper::vmul(va_f32, vin_deq.val[3])), } }; tmp = vquantize(tmp_dep, qi_out); } else { ARM_COMPUTE_ERROR("Unsupported activation function"); } wrapper::vstore(output_ptr + x, tmp); } // Compute left-over elements for(; x < window_end_x; ++x) { qasymm8_t in = *(reinterpret_cast(input_ptr + x)); qasymm8_t tmp = 0; if(act == ActivationLayerInfo::ActivationFunction::RELU) { tmp = std::max(const_0, in); tmp = utility::clamp(tmp * s + o); } else if(act == ActivationLayerInfo::ActivationFunction::BOUNDED_RELU) { tmp = std::min(a, std::max(const_0, in)); tmp = utility::clamp(tmp * s + o); } else if(act == ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU) { tmp = std::min(a, std::max(b, in)); tmp = utility::clamp(tmp * s + o); } else if(act == ActivationLayerInfo::ActivationFunction::LOGISTIC) { float tmp_f = dequantize_qasymm8(in, qi_in); tmp_f = 1.f / (1.f + std::exp(-tmp_f)); tmp = quantize_qasymm8(tmp_f, qi_out); } else if(act == ActivationLayerInfo::ActivationFunction::TANH) { float tmp_f = dequantize_qasymm8(in, qi_in); tmp_f = a_f32 * std::tanh(b_f32 * tmp_f); tmp = quantize_qasymm8(tmp_f, qi_out); } else if(act == ActivationLayerInfo::ActivationFunction::HARD_SWISH) { float tmp_f = dequantize_qasymm8(in, qi_in); tmp_f = tmp_f * ((std::min(std::max((tmp_f + 3), 0.0f), 6.0f)) * 0.166666667f); tmp = quantize_qasymm8(tmp_f, qi_out); } else if(act == ActivationLayerInfo::ActivationFunction::LEAKY_RELU) { float tmp_f = dequantize_qasymm8(in, qi_in); tmp_f = tmp_f > 0 ? tmp_f : tmp_f * a_f32; tmp = quantize_qasymm8(tmp_f, qi_out); } else { ARM_COMPUTE_ERROR("Unsupported activation function"); } *(output_ptr + x) = tmp; } }, input, output); } } // namespace cpu } // namespace arm_compute