/* * Copyright (c) 2020-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensorPack.h" #include "arm_compute/core/Window.h" #include "src/core/NEON/NEMath.h" #include "src/core/NEON/wrapper/wrapper.h" #include "src/core/common/Validate.h" #include #include #include namespace arm_compute { namespace cpu { namespace { #ifndef __aarch64__ inline float32x4_t mask_float_vector(const float32x4_t &in, const uint32x4_t &mask) { auto int_in = vreinterpretq_u32_f32(in); return vreinterpretq_f32_u32(wrapper::vand(int_in, mask)); } #endif /* __aarch64__ */ } // namespace void fp32_neon_activation(const ITensor *src, ITensor *dst, const ActivationLayerInfo &act_info, const Window &window) { /** Neon vector tag type. */ using ExactTagType = typename arm_compute::wrapper::traits::neon_bitvector_tag_t; constexpr int window_step_x = 4; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const ActivationLayerInfo::ActivationFunction act = act_info.activation(); Window win_collapsed = window.collapse_if_possible(window, Window::DimZ); win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input(src, win_collapsed); Iterator output(dst, win_collapsed); // In case of non-aarch64, a small delta value is added to the input // to prevent NAN values caused by zeros in inputs to SQRT. // In case of aarh64, we call vsqrt directly, so we don't use delta. #ifndef __aarch64__ const auto delta = wrapper::vdup_n(static_cast(1e-24), ExactTagType {}); #endif /* __aarch64__ */ const auto const_1 = wrapper::vdup_n(static_cast(1.f), ExactTagType {}); const auto const_0 = wrapper::vdup_n(static_cast(0.f), ExactTagType{}); const auto const_6 = wrapper::vdup_n(static_cast(6.f), ExactTagType{}); const auto const_3 = wrapper::vdup_n(static_cast(3.f), ExactTagType{}); const auto const_inv_6 = wrapper::vdup_n(static_cast(0.166666667f), ExactTagType{}); constexpr float soft_relu_thresh = 12.f; const auto vsoft_relu_thresh = wrapper::vdup_n(static_cast(soft_relu_thresh), ExactTagType{}); const auto va = wrapper::vdup_n(static_cast(act_info.a()), ExactTagType{}); const auto vb = wrapper::vdup_n(static_cast(act_info.b()), ExactTagType{}); const auto a = static_cast(act_info.a()); const auto b = static_cast(act_info.b()); execute_window_loop(win_collapsed, [&](const Coordinates &) { const auto input_ptr = reinterpret_cast(input.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); wrapper::traits::neon_bitvector_t tmp; // Compute S elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto vin = wrapper::vloadq(input_ptr + x); switch(act) { case ActivationLayerInfo::ActivationFunction::ABS: tmp = wrapper::vabs(vin); break; case ActivationLayerInfo::ActivationFunction::LINEAR: tmp = wrapper::vmla(vb, va, vin); break; case ActivationLayerInfo::ActivationFunction::LOGISTIC: tmp = wrapper::vinv(wrapper::vadd(const_1, wrapper::vexpq(wrapper::vneg(vin)))); break; case ActivationLayerInfo::ActivationFunction::RELU: tmp = wrapper::vmax(const_0, vin); break; case ActivationLayerInfo::ActivationFunction::BOUNDED_RELU: tmp = wrapper::vmin(va, wrapper::vmax(const_0, vin)); break; case ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU: tmp = wrapper::vmin(va, wrapper::vmax(vb, vin)); break; case ActivationLayerInfo::ActivationFunction::LEAKY_RELU: tmp = wrapper::vbsl(wrapper::vcgt(vin, const_0), vin, wrapper::vmul(va, vin)); break; case ActivationLayerInfo::ActivationFunction::SOFT_RELU: tmp = wrapper::vbsl(wrapper::vcgt(vin, vsoft_relu_thresh), vin, wrapper::vlog(wrapper::vadd(const_1, wrapper::vexpq(vin)))); break; case ActivationLayerInfo::ActivationFunction::ELU: tmp = wrapper::vbsl(wrapper::vcge(vin, const_0), vin, wrapper::vmul(va, wrapper::vsub(wrapper::vexpq(vin), const_1))); break; case ActivationLayerInfo::ActivationFunction::SQRT: #ifdef __aarch64__ tmp = wrapper::vsqrt(vin); #else /* __aarch64__ */ { const auto bitmask = wrapper::vceq(vin, wrapper::vdup_n(0.f, ExactTagType{})); tmp = wrapper::vinv(wrapper::vinvsqrt(wrapper::vadd(vin, mask_float_vector(delta, bitmask)))); tmp = mask_float_vector(tmp, wrapper::vnot(bitmask)); } #endif /* __aarch64__ */ break; case ActivationLayerInfo::ActivationFunction::SQUARE: tmp = wrapper::vmul(vin, vin); break; case ActivationLayerInfo::ActivationFunction::TANH: tmp = wrapper::vmul(va, wrapper::vtanh(wrapper::vmul(vb, vin))); break; case ActivationLayerInfo::ActivationFunction::IDENTITY: tmp = vin; break; case ActivationLayerInfo::ActivationFunction::HARD_SWISH: tmp = wrapper::vmul(vin, wrapper::vmul(const_inv_6, wrapper::vmin(const_6, wrapper::vmax(const_0, wrapper::vadd(vin, const_3))))); break; default: ARM_COMPUTE_ERROR("Unsupported activation function"); } wrapper::vstore(output_ptr + x, tmp); } // Compute left-over elements for(; x < window_end_x; ++x) { const float in = *(reinterpret_cast(input_ptr + x)); float tmp; switch(act) { case ActivationLayerInfo::ActivationFunction::ABS: tmp = std::abs(in); break; case ActivationLayerInfo::ActivationFunction::LINEAR: tmp = a * in + b; break; case ActivationLayerInfo::ActivationFunction::LOGISTIC: tmp = static_cast(1) / (static_cast(1) + std::exp(-in)); break; case ActivationLayerInfo::ActivationFunction::RELU: tmp = std::max(static_cast(0), in); break; case ActivationLayerInfo::ActivationFunction::BOUNDED_RELU: tmp = std::min(a, std::max(static_cast(0), in)); break; case ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU: tmp = std::min(a, std::max(b, in)); break; case ActivationLayerInfo::ActivationFunction::LEAKY_RELU: tmp = (in > 0) ? in : a * in; break; case ActivationLayerInfo::ActivationFunction::SOFT_RELU: tmp = (in > soft_relu_thresh) ? in : std::log(static_cast(1) + std::exp(in)); break; case ActivationLayerInfo::ActivationFunction::ELU: tmp = (in >= 0) ? in : a * (std::exp(in) - 1); break; case ActivationLayerInfo::ActivationFunction::SQRT: tmp = std::sqrt(in); break; case ActivationLayerInfo::ActivationFunction::SQUARE: tmp = in * in; break; case ActivationLayerInfo::ActivationFunction::TANH: tmp = a * std::tanh(b * in); break; case ActivationLayerInfo::ActivationFunction::IDENTITY: tmp = in; break; case ActivationLayerInfo::ActivationFunction::HARD_SWISH: tmp = in * ((std::min(std::max((in + 3), 0.0f), 6.0f)) * 0.166666667f); break; default: ARM_COMPUTE_ERROR("Unsupported activation function"); } *(output_ptr + x) = tmp; } }, input, output); } } // namespace cpu } // namespace arm_compute