/* * Copyright (c) 2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/core/cpu/kernels/CpuTransposeKernel.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include namespace arm_compute { namespace cpu { namespace kernels { namespace { unsigned int num_elems_processed(size_t element_size) { switch(element_size) { case 1: return 8; case 2: case 4: return 4; default: break; } ARM_COMPUTE_ERROR("Element size not supported"); } void transpose_8bit_elements(const ITensor *in, ITensor *out, const Window &window) { const int window_step_x = 8; const int window_step_y = 8; const int window_start_x = window.x().start(); const int window_end_x = window.x().end(); const int window_start_y = window.y().start(); const int window_end_y = std::min(window.y().end(), static_cast(in->info()->dimension(1))); const int window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y; const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1]; const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1]; // Check if we need a left-over loop for the y dimension bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0); Window window_in(window); window_in.set(Window::DimX, Window::Dimension(0, 1, 1)); if(left_over_loop_y) { // Check if window_end_y_multiple_of is greater than window_start_y if(window_end_y_multiple_of > window_start_y) { window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y)); } else { window_in.set(Window::DimY, Window::Dimension(0, 0, 1)); } } Window window_out(window); window_out.set(Window::DimX, Window::Dimension(0, 0, 0)); window_out.set(Window::DimY, Window::Dimension(0, 0, 0)); Iterator output(out, window_out); // Run the SIMD path if and only if the input is not a row-vector if(in->info()->dimension(1) != 1) { Iterator input(in, window_in); execute_window_loop(window_in, [&](const Coordinates & id) { // Compute 8x8 elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const uint8x8_t row0 = vld1_u8(reinterpret_cast(input.ptr() + x + 0 * input_stride_in_bytes)); const uint8x8_t row1 = vld1_u8(reinterpret_cast(input.ptr() + x + 1 * input_stride_in_bytes)); const uint8x8_t row2 = vld1_u8(reinterpret_cast(input.ptr() + x + 2 * input_stride_in_bytes)); const uint8x8_t row3 = vld1_u8(reinterpret_cast(input.ptr() + x + 3 * input_stride_in_bytes)); const uint8x8_t row4 = vld1_u8(reinterpret_cast(input.ptr() + x + 4 * input_stride_in_bytes)); const uint8x8_t row5 = vld1_u8(reinterpret_cast(input.ptr() + x + 5 * input_stride_in_bytes)); const uint8x8_t row6 = vld1_u8(reinterpret_cast(input.ptr() + x + 6 * input_stride_in_bytes)); const uint8x8_t row7 = vld1_u8(reinterpret_cast(input.ptr() + x + 7 * input_stride_in_bytes)); // Transpose 2x2 const uint8x8x2_t k0_u8 = vtrn_u8(row0, row1); const uint8x8x2_t k1_u8 = vtrn_u8(row2, row3); const uint8x8x2_t k2_u8 = vtrn_u8(row4, row5); const uint8x8x2_t k3_u8 = vtrn_u8(row6, row7); // Transpose 4x4 const uint16x4x2_t k0_u16 = vtrn_u16(vreinterpret_u16_u8(k0_u8.val[0]), vreinterpret_u16_u8(k1_u8.val[0])); const uint16x4x2_t k1_u16 = vtrn_u16(vreinterpret_u16_u8(k0_u8.val[1]), vreinterpret_u16_u8(k1_u8.val[1])); const uint16x4x2_t k2_u16 = vtrn_u16(vreinterpret_u16_u8(k2_u8.val[0]), vreinterpret_u16_u8(k3_u8.val[0])); const uint16x4x2_t k3_u16 = vtrn_u16(vreinterpret_u16_u8(k2_u8.val[1]), vreinterpret_u16_u8(k3_u8.val[1])); // Transpose 8x8 const uint32x2x2_t k0_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k2_u16.val[0])); const uint32x2x2_t k1_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k2_u16.val[1])); const uint32x2x2_t k2_u32 = vtrn_u32(vreinterpret_u32_u16(k1_u16.val[0]), vreinterpret_u32_u16(k3_u16.val[0])); const uint32x2x2_t k3_u32 = vtrn_u32(vreinterpret_u32_u16(k1_u16.val[1]), vreinterpret_u32_u16(k3_u16.val[1])); // Compute destination address const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + x * output_stride_in_bytes; vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[0]))); vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[0]))); vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[0]))); vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[0]))); vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 4 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[1]))); vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 5 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[1]))); vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 6 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[1]))); vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 7 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[1]))); } // Compute left-over elements along the x dimension (1x8) for(; x < window_end_x; ++x) { const uint8_t val0 = *(input.ptr() + x + 0 * input_stride_in_bytes); const uint8_t val1 = *(input.ptr() + x + 1 * input_stride_in_bytes); const uint8_t val2 = *(input.ptr() + x + 2 * input_stride_in_bytes); const uint8_t val3 = *(input.ptr() + x + 3 * input_stride_in_bytes); const uint8_t val4 = *(input.ptr() + x + 4 * input_stride_in_bytes); const uint8_t val5 = *(input.ptr() + x + 5 * input_stride_in_bytes); const uint8_t val6 = *(input.ptr() + x + 6 * input_stride_in_bytes); const uint8_t val7 = *(input.ptr() + x + 7 * input_stride_in_bytes); uint8x8_t result = vdup_n_u8(0); result = vset_lane_u8(val0, result, 0); result = vset_lane_u8(val1, result, 1); result = vset_lane_u8(val2, result, 2); result = vset_lane_u8(val3, result, 3); result = vset_lane_u8(val4, result, 4); result = vset_lane_u8(val5, result, 5); result = vset_lane_u8(val6, result, 6); result = vset_lane_u8(val7, result, 7); // Compute destination address const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + x * output_stride_in_bytes; vst1_u8(output.ptr() + dst_offset_in_bytes, result); } }, input, output); } if(left_over_loop_y) { window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1)); window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1)); Iterator input(in, window_in); Iterator output(out, window_out); // Compute left-over elements along the y dimension (1x1) execute_window_loop(window_in, [&](const Coordinates & id) { const uint8_t val0 = *input.ptr(); // Compute destination address const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + id.x() * output_stride_in_bytes; *(output.ptr() + dst_offset_in_bytes) = val0; }, input, output); } } void transpose_16bit_elements(const ITensor *in, ITensor *out, const Window &window) { const int window_step_x = 4; const int window_step_y = 4; const int window_start_x = window.x().start(); const int window_end_x = window.x().end(); const int window_start_y = window.y().start(); const int window_end_y = std::min(window.y().end(), static_cast(in->info()->dimension(1))); const int window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y; const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1]; const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1]; // Check if we need a left-over loop for the y dimension bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0); Window window_in(window); window_in.set(Window::DimX, Window::Dimension(0, 1, 1)); if(left_over_loop_y) { // Check if window_end_y_multiple_of is greater than window_start_y if(window_end_y_multiple_of > window_start_y) { window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y)); } else { window_in.set(Window::DimY, Window::Dimension(0, 0, 1)); } } Window window_out(window); window_out.set(Window::DimX, Window::Dimension(0, 0, 0)); window_out.set(Window::DimY, Window::Dimension(0, 0, 0)); Iterator output(out, window_out); // Run the SIMD path if and only if the input is not a row-vector if(in->info()->dimension(1) != 1) { Iterator input(in, window_in); execute_window_loop(window_in, [&](const Coordinates & id) { // Compute 4x4 elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const uint16x4_t row0 = vld1_u16(reinterpret_cast(input.ptr() + 0 * input_stride_in_bytes) + x); const uint16x4_t row1 = vld1_u16(reinterpret_cast(input.ptr() + 1 * input_stride_in_bytes) + x); const uint16x4_t row2 = vld1_u16(reinterpret_cast(input.ptr() + 2 * input_stride_in_bytes) + x); const uint16x4_t row3 = vld1_u16(reinterpret_cast(input.ptr() + 3 * input_stride_in_bytes) + x); // Transpose 2x2 const uint16x4x2_t k0_u16 = vtrn_u16(row0, row1); const uint16x4x2_t k1_u16 = vtrn_u16(row2, row3); // Transpose 4x4 const uint32x2x2_t k0_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k1_u16.val[0])); const uint32x2x2_t k1_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k1_u16.val[1])); // Compute destination address const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + x * output_stride_in_bytes; vst1_u16(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vreinterpret_u16_u32(k0_u32.val[0])); vst1_u16(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vreinterpret_u16_u32(k1_u32.val[0])); vst1_u16(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vreinterpret_u16_u32(k0_u32.val[1])); vst1_u16(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vreinterpret_u16_u32(k1_u32.val[1])); } // Compute left-over elements (1x4) for(; x < window_end_x; ++x) { const uint16_t val0 = *(reinterpret_cast(input.ptr() + 0 * input_stride_in_bytes) + x); const uint16_t val1 = *(reinterpret_cast(input.ptr() + 1 * input_stride_in_bytes) + x); const uint16_t val2 = *(reinterpret_cast(input.ptr() + 2 * input_stride_in_bytes) + x); const uint16_t val3 = *(reinterpret_cast(input.ptr() + 3 * input_stride_in_bytes) + x); uint16x4_t result = vdup_n_u16(0); result = vset_lane_u16(val0, result, 0); result = vset_lane_u16(val1, result, 1); result = vset_lane_u16(val2, result, 2); result = vset_lane_u16(val3, result, 3); // Compute destination address const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + x * output_stride_in_bytes; vst1_u16(reinterpret_cast(output.ptr() + dst_offset_in_bytes), result); } }, input, output); } if(left_over_loop_y) { window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1)); window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1)); Iterator input(in, window_in); Iterator output(out, window_out); // Compute left-over elements along the y dimension (1x1) execute_window_loop(window_in, [&](const Coordinates & id) { const uint16_t val0 = *(reinterpret_cast(input.ptr())); // Compute destination address const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + id.x() * output_stride_in_bytes; *(reinterpret_cast(output.ptr() + dst_offset_in_bytes)) = val0; }, input, output); } } void transpose_32bit_elements(const ITensor *in, ITensor *out, const Window &window) { const int window_step_x = 4; const int window_step_y = 4; const int window_start_x = window.x().start(); const int window_end_x = window.x().end(); const int window_start_y = window.y().start(); const int window_end_y = std::min(window.y().end(), static_cast(in->info()->dimension(1))); const int window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y; const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1]; const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1]; // Check if we need a left-over loop for the y dimension bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0); Window window_in(window); window_in.set(Window::DimX, Window::Dimension(0, 1, 1)); if(left_over_loop_y) { // Check if window_end_y_multiple_of is greater than window_start_y if(window_end_y_multiple_of > window_start_y) { window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y)); } else { window_in.set(Window::DimY, Window::Dimension(0, 0, 1)); } } Window window_out(window); window_out.set(Window::DimX, Window::Dimension(0, 0, 0)); window_out.set(Window::DimY, Window::Dimension(0, 0, 0)); Iterator output(out, window_out); // Run the SIMD path if and only if the input is not a row-vector if(in->info()->dimension(1) != 1) { Iterator input(in, window_in); execute_window_loop(window_in, [&](const Coordinates & id) { // Compute 4x4 elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const uint32x4_t row0 = vld1q_u32(reinterpret_cast(input.ptr() + 0 * input_stride_in_bytes) + x); const uint32x4_t row1 = vld1q_u32(reinterpret_cast(input.ptr() + 1 * input_stride_in_bytes) + x); const uint32x4_t row2 = vld1q_u32(reinterpret_cast(input.ptr() + 2 * input_stride_in_bytes) + x); const uint32x4_t row3 = vld1q_u32(reinterpret_cast(input.ptr() + 3 * input_stride_in_bytes) + x); // Transpose 2x2 const uint32x2x2_t k0_u32 = vtrn_u32(vget_low_u32(row0), vget_low_u32(row1)); const uint32x2x2_t k1_u32 = vtrn_u32(vget_high_u32(row2), vget_high_u32(row3)); const uint32x2x2_t k2_u32 = vtrn_u32(vget_high_u32(row0), vget_high_u32(row1)); const uint32x2x2_t k3_u32 = vtrn_u32(vget_low_u32(row2), vget_low_u32(row3)); // Compute destination address const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + x * output_stride_in_bytes; // Swap block 01 with block 10 and store vst1q_u32(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vcombine_u32(k0_u32.val[0], k3_u32.val[0])); vst1q_u32(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vcombine_u32(k0_u32.val[1], k3_u32.val[1])); vst1q_u32(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vcombine_u32(k2_u32.val[0], k1_u32.val[0])); vst1q_u32(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vcombine_u32(k2_u32.val[1], k1_u32.val[1])); } // Compute left-over elements (1x4) for(; x < window_end_x; ++x) { const uint32_t val0 = *(reinterpret_cast(input.ptr() + 0 * input_stride_in_bytes) + x); const uint32_t val1 = *(reinterpret_cast(input.ptr() + 1 * input_stride_in_bytes) + x); const uint32_t val2 = *(reinterpret_cast(input.ptr() + 2 * input_stride_in_bytes) + x); const uint32_t val3 = *(reinterpret_cast(input.ptr() + 3 * input_stride_in_bytes) + x); uint32x4_t result = vdupq_n_u32(0); result = vsetq_lane_u32(val0, result, 0); result = vsetq_lane_u32(val1, result, 1); result = vsetq_lane_u32(val2, result, 2); result = vsetq_lane_u32(val3, result, 3); // Compute destination address const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + x * output_stride_in_bytes; vst1q_u32(reinterpret_cast(output.ptr() + dst_offset_in_bytes), result); } }, input, output); } if(left_over_loop_y) { window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1)); window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1)); Iterator input(in, window_in); Iterator output(out, window_out); // Compute left-over elements along the y dimension (1x1) execute_window_loop(window_in, [&](const Coordinates & id) { const uint32_t val0 = *(reinterpret_cast(input.ptr())); // Compute destination address const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + id.x() * output_stride_in_bytes; *(reinterpret_cast(output.ptr() + dst_offset_in_bytes)) = val0; }, input, output); } } } // namespace void CpuTransposeKernel::configure(const ITensorInfo *src, ITensorInfo *dst) { ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst); // Destination auto inizialitation if not yet initialized const TensorShape dst_shape = misc::shape_calculator::compute_transposed_shape(*src); auto_init_if_empty(*dst, src->clone()->set_tensor_shape(dst_shape)); // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(validate(src, dst)); // Note: This kernel performs 16 elements per iteration. // However, since we use a left-over for loop on both dimensions (X and Y), we cannot have any read or write out of memory // For this reason num_elems_processed_per_iteration_x is set to 1 const unsigned int num_elems_processed_per_iteration_x = 1; const unsigned int num_elems_processed_per_iteration_y = num_elems_processed(src->element_size()); // Configure kernel window Window win = calculate_max_window(*src, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y)); // The CpuTranspose doesn't need padding so update_window_and_padding() can be skipped Coordinates coord; coord.set_num_dimensions(dst->num_dimensions()); dst->set_valid_region(ValidRegion(coord, dst->tensor_shape())); ICpuKernel::configure(win); } Status CpuTransposeKernel::validate(const ITensorInfo *src, const ITensorInfo *dst) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src); //Note: ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input) is not needed here as this kernel doesn't use CPU FP16 instructions. ARM_COMPUTE_RETURN_ERROR_ON(src->data_type() == DataType::UNKNOWN); // Error if input is not 8 bit, 16bit or 32bit ARM_COMPUTE_RETURN_ERROR_ON_MSG(src->element_size() != 1 && src->element_size() != 2 && src->element_size() != 4, "Element size not supported"); // Validate configured destination if(dst->total_size() != 0) { const TensorShape dst_shape = misc::shape_calculator::compute_transposed_shape(*src); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(dst->tensor_shape(), dst_shape); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(src, dst); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst); } return Status{}; } void CpuTransposeKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window); const auto src = tensors.get_const_tensor(TensorType::ACL_SRC); auto dst = tensors.get_tensor(TensorType::ACL_DST); switch(src->info()->element_size()) { case 1: transpose_8bit_elements(src, dst, window); break; case 2: transpose_16bit_elements(src, dst, window); break; case 4: transpose_32bit_elements(src, dst, window); break; default: ARM_COMPUTE_ERROR("Element size not supported"); break; } } const char *CpuTransposeKernel::name() const { return "CpuTransposeKernel"; } } // namespace kernels } // namespace cpu } // namespace arm_compute