/* * Copyright (c) 2017-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/core/cpu/kernels/CpuQuantizationKernel.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "src/core/NEON/NEAsymm.h" #include "src/core/NEON/NEMath.h" #include "src/core/NEON/wrapper/wrapper.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include "src/core/CPP/Validate.h" #include #include namespace arm_compute { namespace cpu { namespace kernels { namespace { constexpr auto window_step = 16; Status validate_arguments(const ITensorInfo *src, const ITensorInfo *dst) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON(dst->tensor_shape().total_size() == 0); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QASYMM16); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(src, dst); return Status{}; } template inline float32x4x4_t load_value(const T *input_ptr) { using Tx16_t = typename wrapper::traits::neon_vector::type; return arm_compute::convert_to_float32x4x4(wrapper::vloadq(input_ptr)); } template <> inline float32x4x4_t load_value(const float *input_ptr) { return { wrapper::vloadq(input_ptr), wrapper::vloadq(input_ptr + 4), wrapper::vloadq(input_ptr + 8), wrapper::vloadq(input_ptr + 12) }; } #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC template <> inline float32x4x4_t load_value(const float16_t *input_ptr) { return { vcvt_f32_f16(wrapper::vload(input_ptr)), vcvt_f32_f16(wrapper::vload(input_ptr + 4)), vcvt_f32_f16(wrapper::vload(input_ptr + 8)), vcvt_f32_f16(wrapper::vload(input_ptr + 12)) }; } #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC template using vector_type = wrapper::traits::neon_vector_t; template vector_type vquantize_qasymm8(const float32x4x4_t &qv, const UniformQuantizationInfo &qi); template <> vector_type vquantize_qasymm8(const float32x4x4_t &qv, const UniformQuantizationInfo &qi) { return vquantize(qv, qi); } template <> vector_type vquantize_qasymm8(const float32x4x4_t &qv, const UniformQuantizationInfo &qi) { return vquantize_signed(qv, qi); } } // namespace CpuQuantizationKernel::CpuQuantizationKernel() : _func(nullptr) { } void CpuQuantizationKernel::configure(ITensorInfo *src, ITensorInfo *dst) { ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, dst)); static const std::map quant_map = { { "op_QASYMM8_QASYMM8", &CpuQuantizationKernel::run_quantize_qasymm8 }, { "op_QASYMM8_QASYMM8_SIGNED", &CpuQuantizationKernel::run_quantize_qasymm8 }, { "op_QASYMM8_QASYMM16", &CpuQuantizationKernel::run_quantize_qasymm16 }, { "op_QASYMM8_SIGNED_QASYMM8", &CpuQuantizationKernel::run_quantize_qasymm8 }, { "op_QASYMM8_SIGNED_QASYMM8_SIGNED", &CpuQuantizationKernel::run_quantize_qasymm8 }, { "op_QASYMM8_SIGNED_QASYMM16", &CpuQuantizationKernel::run_quantize_qasymm16 }, { "op_F32_QASYMM8", &CpuQuantizationKernel::run_quantize_qasymm8 }, { "op_F32_QASYMM8_SIGNED", &CpuQuantizationKernel::run_quantize_qasymm8 }, { "op_F32_QASYMM16", &CpuQuantizationKernel::run_quantize_qasymm16 }, #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC { "op_F16_QASYMM8", &CpuQuantizationKernel::run_quantize_qasymm8 }, { "op_F16_QASYMM8_SIGNED", &CpuQuantizationKernel::run_quantize_qasymm8 }, { "op_F16_QASYMM16", &CpuQuantizationKernel::run_quantize_qasymm16 }, #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC*/ }; std::string function_to_call("op_"); function_to_call += string_from_data_type(src->data_type()) + "_"; function_to_call += string_from_data_type(dst->data_type()); auto it = quant_map.find(function_to_call); if(it == quant_map.end()) { ARM_COMPUTE_ERROR("Unsupported combination of input and output data types"); } _func = it->second; // Configure kernel window Window win_config = calculate_max_window(*src, Steps()); ICpuKernel::configure(win_config); } Status CpuQuantizationKernel::validate(const ITensorInfo *src, const ITensorInfo *dst) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, dst)); return Status{}; } template void CpuQuantizationKernel::run_quantize_qasymm8(const ITensor *src, ITensor *dst, const Window &window) { const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const UniformQuantizationInfo uqinfo_in = src->info()->quantization_info().uniform(); UniformQuantizationInfo uqinfo = dst->info()->quantization_info().uniform(); if(is_data_type_quantized_asymmetric(src->info()->data_type())) { uqinfo = compute_requantization_scale_offset(uqinfo_in, uqinfo); } #ifdef __aarch64__ constexpr RoundingPolicy rounding_policy = RoundingPolicy::TO_NEAREST_EVEN; #else //__aarch64__ constexpr RoundingPolicy rounding_policy = RoundingPolicy::TO_ZERO; #endif //__aarch64__ // Collapse window and reset first dimension to handle tail calculations manually Window win_collapsed = window.collapse_if_possible(window, Window::DimZ); win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input(src, win_collapsed); Iterator output(dst, win_collapsed); execute_window_loop(win_collapsed, [&](const Coordinates &) { auto input_ptr = reinterpret_cast(input.ptr()); auto output_ptr = reinterpret_cast(output.ptr()); int x = window_start_x; for(; x <= (window_end_x - window_step); x += window_step) { wrapper::vstore(&output_ptr[x], vquantize_qasymm8(load_value(&input_ptr[x]), uqinfo)); } // Compute left-over elements for(; x < window_end_x; ++x) { output_ptr[x] = Qasymm8QuantizationHelper::quantize(input_ptr[x], uqinfo, rounding_policy); } }, input, output); } template void CpuQuantizationKernel::run_quantize_qasymm16(const ITensor *src, ITensor *dst, const Window &window) { const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const UniformQuantizationInfo uqinfo_in = src->info()->quantization_info().uniform(); UniformQuantizationInfo uqinfo = dst->info()->quantization_info().uniform(); if(is_data_type_quantized_asymmetric(src->info()->data_type())) { uqinfo = compute_requantization_scale_offset(uqinfo_in, uqinfo); } #ifdef __aarch64__ constexpr RoundingPolicy rounding_policy = RoundingPolicy::TO_NEAREST_EVEN; #else //__aarch64__ constexpr RoundingPolicy rounding_policy = RoundingPolicy::TO_ZERO; #endif //__aarch64__ // Collapse window and reset first dimension to handle tail calculations manually Window win_collapsed = window.collapse_if_possible(window, Window::DimZ); win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input(src, win_collapsed); Iterator output(dst, win_collapsed); execute_window_loop(win_collapsed, [&](const Coordinates &) { auto input_ptr = reinterpret_cast(input.ptr()); auto output_ptr = reinterpret_cast(output.ptr()); int x = window_start_x; for(; x <= (window_end_x - window_step); x += window_step) { uint16x8x2_t tmp = vquantize_qasymm16(load_value(&input_ptr[x]), uqinfo); vst1q_u16(&output_ptr[x], tmp.val[0]); vst1q_u16(&output_ptr[x + 8], tmp.val[1]); } // Compute left-over elements for(; x < window_end_x; ++x) { output_ptr[x] = quantize_qasymm16(input_ptr[x], uqinfo, rounding_policy); } }, input, output); } void CpuQuantizationKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr); const auto src = tensors.get_const_tensor(TensorType::ACL_SRC); auto dst = tensors.get_tensor(TensorType::ACL_DST); (this->*_func)(src, dst, window); } const char *CpuQuantizationKernel::name() const { return "CpuQuantizationKernel"; } } // namespace kernels } // namespace cpu } // namespace arm_compute