/* * Copyright (c) 2018-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/core/cpu/kernels/CpuElementwiseKernel.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/IAccessWindow.h" #include "src/core/CPP/Validate.h" #include "src/core/common/Registrars.h" #include "src/core/cpu/kernels/elementwise/neon/elementwise_list.h" #include "src/core/cpu/kernels/elementwise/neon/elementwise_quantized_list.h" #include "src/core/cpu/kernels/elementwise/sve/elementwise_list.h" #include "src/core/cpu/kernels/elementwise/sve/elementwise_quantized_list.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include namespace arm_compute { namespace cpu { namespace kernels { namespace { using ElementwiseSelector = std::add_pointer::type; using UKernelType = CpuElementwiseKernel::ElementwiseFunction; struct ElementwiseKernel { const char *name; const ElementwiseSelector is_selected; UKernelType *ukernel; }; template inline bool is_selected(DataType data_type) { return dt == data_type; } template static ElementwiseKernel generate_kernel(UKernelType *ukernel) { std::string kernel_name("op_"); kernel_name += string_from_data_type(input_data_type) + "_"; kernel_name += string_from_data_type(input_data_type) + "_"; kernel_name += string_from_data_type(output_data_type); return { kernel_name.c_str(), is_selected, ukernel }; } template std::function configure_arithm_func(const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output) { ARM_COMPUTE_UNUSED(input2, output); static ElementwiseKernel kernels[] = { #if defined(__ARM_FEATURE_SVE) generate_kernel(REGISTER_FP32_SVE((arm_compute::cpu::sve::elementwise_arithmetic_op))), generate_kernel(REGISTER_INTEGER_SVE((arm_compute::cpu::sve::elementwise_arithmetic_op))), #else /* defined(__ARM_FEATURE_SVE) */ generate_kernel(REGISTER_FP32_NEON((arm_compute::cpu::elementwise_arithm_op>))), generate_kernel(REGISTER_INTEGER_NEON((arm_compute::cpu::elementwise_arithm_op>))), #endif /* defined(__ARM_FEATURE_SVE) */ #if defined(__ARM_FEATURE_SVE2) generate_kernel(REGISTER_QASYMM8_SVE((arm_compute::cpu::sve::elementwise_arithmetic_quantized_op))), generate_kernel(REGISTER_QASYMM8_SIGNED_SVE((arm_compute::cpu::sve::elementwise_arithmetic_quantized_op))), #else /* defined(__ARM_FEATURE_SVE2) */ generate_kernel(REGISTER_QASYMM8_NEON((arm_compute::cpu::elementwise_arithm_op_quantized))), generate_kernel(REGISTER_QASYMM8_SIGNED_NEON((arm_compute::cpu::elementwise_arithm_op_quantized_signed))), #endif /* defined(__ARM_FEATURE_SVE2) */ #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC #if defined(__ARM_FEATURE_SVE) generate_kernel(REGISTER_FP16_SVE((arm_compute::cpu::sve::elementwise_arithmetic_op))), #else /* defined(__ARM_FEATURE_SVE) */ generate_kernel(REGISTER_FP16_NEON((arm_compute::cpu::elementwise_arithm_op>))), #endif /* defined(__ARM_FEATURE_SVE) */ #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ generate_kernel(REGISTER_INTEGER_NEON((arm_compute::cpu::elementwise_arithm_op>))), }; for(const auto &uk : kernels) { if(uk.is_selected(input1->data_type())) { return uk.ukernel; } } return nullptr; } template std::function configure_comp_func(const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output) { ARM_COMPUTE_UNUSED(input2, output); static ElementwiseKernel kernels[] = { #if defined(__ARM_FEATURE_SVE) generate_kernel(REGISTER_INTEGER_SVE((arm_compute::cpu::sve::elementwise_comparison_op))), generate_kernel(REGISTER_FP32_SVE((arm_compute::cpu::sve::elementwise_comparison_op))), generate_kernel(REGISTER_INTEGER_SVE((arm_compute::cpu::sve::elementwise_comparison_op))), generate_kernel(REGISTER_INTEGER_SVE((arm_compute::cpu::sve::elementwise_comparison_op))), #else /* defined(__ARM_FEATURE_SVE) */ generate_kernel(REGISTER_INTEGER_NEON((arm_compute::cpu::elementwise_comp_op_8))), generate_kernel(REGISTER_FP32_NEON((arm_compute::cpu::elementwise_comp_op_32))), generate_kernel(REGISTER_INTEGER_NEON((arm_compute::cpu::elementwise_comp_op_16))), generate_kernel(REGISTER_INTEGER_NEON((arm_compute::cpu::elementwise_comp_op_32))), #endif /* defined(__ARM_FEATURE_SVE) */ #if defined(__ARM_FEATURE_SVE2) generate_kernel(REGISTER_QASYMM8_SIGNED_SVE((arm_compute::cpu::sve::elementwise_comparison_quantized_op))), generate_kernel(REGISTER_QASYMM8_SVE((arm_compute::cpu::sve::elementwise_comparison_quantized_op))), #else /* defined(__ARM_FEATURE_SVE2) */ generate_kernel(REGISTER_QASYMM8_SIGNED_NEON((arm_compute::cpu::elementwise_comp_op_quantized_signed))), generate_kernel(REGISTER_QASYMM8_NEON((arm_compute::cpu::elementwise_comp_op_quantized))), #endif /* defined(__ARM_FEATURE_SVE2) */ #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC #if defined(__ARM_FEATURE_SVE) generate_kernel(REGISTER_FP16_SVE((arm_compute::cpu::sve::elementwise_comparison_op))), #else /* defined(__ARM_FEATURE_SVE) */ generate_kernel(REGISTER_FP16_NEON((arm_compute::cpu::elementwise_comp_op_16))), #endif /* defined(__ARM_FEATURE_SVE) */ #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ }; for(const auto &uk : kernels) { if(uk.is_selected(input1->data_type())) { return uk.ukernel; } } return nullptr; } } // namespace Status CpuElementwiseKernel::validate_arguments_common(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output) { ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input1); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &input2); const TensorShape out_shape = TensorShape::broadcast_shape(input1.tensor_shape(), input2.tensor_shape()); ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible"); // Validate in case of configured output if(output.total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output.tensor_shape(), 0), "Wrong shape for output"); } return Status{}; } void CpuElementwiseKernel::configure_common(const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output); // Configure kernel window const std::pair broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2); const TensorShape &out_shape = broadcast_pair.first; const ValidRegion &valid_region = broadcast_pair.second; // Auto initialize output if not initialized auto_init_if_empty(*output, out_shape, 1, input1->data_type()); Window win = calculate_max_window(valid_region); ICpuKernel::configure(win); } void CpuElementwiseKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info, window); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window); auto src0 = tensors.get_const_tensor(TensorType::ACL_SRC_0); auto src1 = tensors.get_const_tensor(TensorType::ACL_SRC_1); auto dst = tensors.get_tensor(TensorType::ACL_DST); auto function = get_implementation(src0->info(), src1->info(), dst->info()); ARM_COMPUTE_ERROR_ON(function == nullptr); function(src0, src1, dst, window); } /** Arithmetic operators (min, max, squared_diff) */ void CpuArithmeticKernel::configure(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output) { ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1, *input2, *output)); configure_common(input1, input2, output); _op = op; } Status CpuArithmeticKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::F16, DataType::S32, DataType::F32); // Validate in case of configured output if(output.total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &output); } return validate_arguments_common(input1, input2, output); } Status CpuArithmeticKernel::validate(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output) { ARM_COMPUTE_UNUSED(op); ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output)); return Status{}; } std::function CpuArithmeticKernel::get_implementation(const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output) { switch(_op) { case ArithmeticOperation::MAX: return configure_arithm_func(input1, input2, output); case ArithmeticOperation::MIN: return configure_arithm_func(input1, input2, output); case ArithmeticOperation::SQUARED_DIFF: return configure_arithm_func(input1, input2, output); case ArithmeticOperation::PRELU: return configure_arithm_func(input1, input2, output); case ArithmeticOperation::DIV: return configure_arithm_func(input1, input2, output); case ArithmeticOperation::POWER: return configure_arithm_func(input1, input2, output); default: ARM_COMPUTE_ERROR("NOT_SUPPORTED!"); } return nullptr; } /** The division operator */ void CpuDivisionKernel::configure(const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output) { ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1, *input2, *output)); configure_common(input1, input2, output); _op = ArithmeticOperation::DIV; } Status CpuDivisionKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::S32, DataType::F16, DataType::F32); return CpuArithmeticKernel::validate_arguments(input1, input2, output); } Status CpuDivisionKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output)); return Status{}; } /** The power operator */ void CpuPowerKernel::configure(const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output) { ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1, *input2, *output)); configure_common(input1, input2, output); _op = ArithmeticOperation::POWER; } Status CpuPowerKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::F16, DataType::F32); return CpuArithmeticKernel::validate_arguments(input1, input2, output); } Status CpuPowerKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output)); return Status{}; } /** Comparison operators (equal, not equal, less than, greater than, less than or equal, greater than or equal) */ void CpuComparisonKernel::configure(ComparisonOperation op, const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output) { ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1, *input2, *output)); configure_common(input1, input2, output); _op = op; } Status CpuComparisonKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::F16, DataType::S32, DataType::F32); // Validate in case of configured output if(output.total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&output, 1, DataType::U8); } return validate_arguments_common(input1, input2, output); } Status CpuComparisonKernel::validate(ComparisonOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output) { ARM_COMPUTE_UNUSED(op); ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output)); return Status{}; } std::function CpuComparisonKernel::get_implementation(const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output) { switch(_op) { case ComparisonOperation::Equal: return configure_comp_func(input1, input2, output); case ComparisonOperation::NotEqual: return configure_comp_func(input1, input2, output); case ComparisonOperation::Greater: return configure_comp_func(input1, input2, output); case ComparisonOperation::GreaterEqual: return configure_comp_func(input1, input2, output); case ComparisonOperation::Less: return configure_comp_func(input1, input2, output); case ComparisonOperation::LessEqual: return configure_comp_func(input1, input2, output); default: ARM_COMPUTE_ERROR("NOT_SUPPORTED!"); } return nullptr; } } // namespace kernels } // namespace cpu } // namespace arm_compute