/* * Copyright (c) 2019-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/core/cpu/kernels/CpuConcatenateBatchKernel.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/IAccessWindow.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "src/core/NEON/NEAsymm.h" #include "src/core/NEON/wrapper/wrapper.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" namespace arm_compute { namespace cpu { namespace kernels { namespace { template void batch_concat(const ITensor *src, ITensor *dst, unsigned int batch_offset, const Window &window) { // Offset src uint8_t *src_ptr = src->buffer() + src->info()->offset_first_element_in_bytes(); // Offset dst uint8_t *dst_ptr = dst->buffer() + dst->info()->offset_first_element_in_bytes() + batch_offset * dst->info()->strides_in_bytes()[3]; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const int window_step_x = 16 / dst->info()->element_size(); Window win{ window }; win.set(Window::DimX, Window::Dimension(0, 1, 1)); win.set(3, Window::Dimension(0, src->info()->tensor_shape()[3], 1)); Iterator src_it(src, win); Iterator dst_it(dst, win); const DataType dt = src->info()->data_type(); const UniformQuantizationInfo src_qinfo = src->info()->quantization_info().uniform(); const UniformQuantizationInfo dst_qinfo = dst->info()->quantization_info().uniform(); if(dt == DataType::QASYMM8 && src_qinfo != dst_qinfo) { execute_window_loop(win, [&](const Coordinates &) { const auto in_ptr = reinterpret_cast(src_ptr + src_it.offset()); const auto out_ptr = reinterpret_cast(dst_ptr + dst_it.offset()); int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { wrapper::vstore(out_ptr, vquantize(vdequantize(wrapper::vloadq(in_ptr), src_qinfo), dst_qinfo)); } // Compute left-over elements for(; x < window_end_x; ++x) { *(out_ptr + x) = quantize_qasymm8(dequantize_qasymm8(*(in_ptr + x), src_qinfo), dst_qinfo); } }, src_it, dst_it); } else if(dt == DataType::QASYMM8_SIGNED && src_qinfo != dst_qinfo) { execute_window_loop(win, [&](const Coordinates &) { const auto in_ptr = reinterpret_cast(src_ptr + src_it.offset()); const auto out_ptr = reinterpret_cast(dst_ptr + dst_it.offset()); int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { wrapper::vstore(out_ptr, vquantize_signed(vdequantize(wrapper::vloadq(in_ptr), src_qinfo), dst_qinfo)); } // Compute left-over elements for(; x < window_end_x; ++x) { *(out_ptr + x) = quantize_qasymm8_signed(dequantize_qasymm8_signed(*(in_ptr + x), src_qinfo), dst_qinfo); } }, src_it, dst_it); } else { execute_window_loop(win, [&](const Coordinates &) { const auto in_ptr = reinterpret_cast(src_ptr + src_it.offset()); const auto out_ptr = reinterpret_cast(dst_ptr + dst_it.offset()); int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { wrapper::vstore(out_ptr + x, wrapper::vloadq(in_ptr + x)); } // Compute left-over elements for(; x < window_end_x; ++x) { *(out_ptr + x) = *(in_ptr + x); } }, src_it, dst_it); } } Status validate_arguments(const ITensorInfo *src, unsigned int batch_offset, const ITensorInfo *dst) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst); //Note: ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src) is not needed here as this kernel doesn't use NEON FP16 instructions. ARM_COMPUTE_RETURN_ERROR_ON(src->data_type() == DataType::UNKNOWN); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst); ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(Window::DimX) != dst->dimension(Window::DimX)); ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(Window::DimY) != dst->dimension(Window::DimY)); ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(Window::DimZ) != dst->dimension(Window::DimZ)); ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(3) + batch_offset > dst->dimension(3)); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(4, src, dst); return Status{}; } } // namespace CpuConcatenateBatchKernel::CpuConcatenateBatchKernel() : _func(nullptr), _batch_offset(0) { } void CpuConcatenateBatchKernel::configure(const ITensorInfo *src, unsigned int batch_offset, ITensorInfo *dst) { ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, batch_offset, dst)); _func = nullptr; _batch_offset = batch_offset; switch(src->data_type()) { case DataType::S8: case DataType::U8: case DataType::QASYMM8: case DataType::QASYMM8_SIGNED: _func = &batch_concat; break; case DataType::S16: case DataType::U16: case DataType::F16: _func = &batch_concat; break; case DataType::S32: case DataType::U32: case DataType::F32: _func = &batch_concat; break; default: ARM_COMPUTE_ERROR("Unsupported data type."); } // Configure kernel window Window win = calculate_max_window(*dst, Steps()); Coordinates coord; coord.set_num_dimensions(dst->num_dimensions()); dst->set_valid_region(ValidRegion(coord, dst->tensor_shape())); ICpuKernel::configure(win); } Status CpuConcatenateBatchKernel::validate(const arm_compute::ITensorInfo *src, unsigned int batch_offset, const arm_compute::ITensorInfo *dst) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, batch_offset, dst)); return Status{}; } void CpuConcatenateBatchKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr); (*_func)(tensors.get_const_tensor(TensorType::ACL_SRC), tensors.get_tensor(TensorType::ACL_DST), _batch_offset, window); } const char *CpuConcatenateBatchKernel::name() const { return "CpuConcatenateBatchKernel"; } } // namespace kernels } // namespace cpu } // namespace arm_compute