/* * Copyright (c) 2017-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/core/cpu/kernels/CpuActivationKernel.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Utils.h" #include "src/core/CPP/Validate.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include "src/core/common/Registrars.h" #include "src/core/cpu/kernels/activation/list.h" #include namespace arm_compute { namespace cpu { namespace kernels { namespace { struct ActivationSelectorData { DataType dt; }; using ActivationSelectorPtr = std::add_pointer::type; using ActivationKernelPtr = std::add_pointer::type; struct ActivationKernel { const char *name; const ActivationSelectorPtr is_selected; ActivationKernelPtr ukernel; }; static const ActivationKernel available_kernels[] = { #if defined(__ARM_FEATURE_SVE) { "fp16_sve_activation", [](const ActivationSelectorData & data) { return data.dt == DataType::F16; }, REGISTER_FP16_SVE(arm_compute::cpu::fp16_sve_activation) }, { "fp32_sve_activation", [](const ActivationSelectorData & data) { return data.dt == DataType::F32; }, REGISTER_FP32_SVE(arm_compute::cpu::fp32_sve_activation) }, #else /* !defined(__ARM_FEATURE_SVE) */ { "fp16_neon_activation", [](const ActivationSelectorData & data) { return data.dt == DataType::F16; }, REGISTER_FP16_NEON(arm_compute::cpu::fp16_neon_activation) }, { "fp32_neon_activation", [](const ActivationSelectorData & data) { return data.dt == DataType::F32; }, REGISTER_FP32_NEON(arm_compute::cpu::fp32_neon_activation) }, #endif /* defined(__ARM_FEATURE_SVE) */ #if defined(__ARM_FEATURE_SVE2) /* defined(__ARM_FEATURE_SVE2) */ { "qasymm8_sve_activation", [](const ActivationSelectorData & data) { return data.dt == DataType::QASYMM8; }, REGISTER_QASYMM8_SVE(arm_compute::cpu::qasymm8_sve_activation) }, { "qasymm8_signed_sve_activation", [](const ActivationSelectorData & data) { return data.dt == DataType::QASYMM8_SIGNED; }, REGISTER_QASYMM8_SIGNED_SVE(arm_compute::cpu::qasymm8_signed_sve_activation) }, { "qsymm16_sve_activation", [](const ActivationSelectorData & data) { return data.dt == DataType::QSYMM16; }, REGISTER_QSYMM16_SVE(arm_compute::cpu::qsymm16_sve_activation) }, #else /* !defined(__ARM_FEATURE_SVE2) */ { "qasymm8_neon_activation", [](const ActivationSelectorData & data) { return data.dt == DataType::QASYMM8; }, REGISTER_QASYMM8_NEON(arm_compute::cpu::qasymm8_neon_activation) }, { "qasymm8_signed_neon_activation", [](const ActivationSelectorData & data) { return data.dt == DataType::QASYMM8_SIGNED; }, REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::qasymm8_signed_neon_activation) }, { "qsymm16_neon_activation", [](const ActivationSelectorData & data) { return data.dt == DataType::QSYMM16; }, REGISTER_QSYMM16_NEON(arm_compute::cpu::qsymm16_neon_activation) }, #endif /* defined(__ARM_FEATURE_SVE2) */ }; const ActivationKernel *get_implementation(const ActivationSelectorData &data) { for(const auto &uk : available_kernels) { if(uk.is_selected(data)) { return &uk; } } return nullptr; } /* Supported activation in the 8-bit integer domain */ static const std::array qasymm8_activations = { ActivationLayerInfo::ActivationFunction::RELU, ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, ActivationLayerInfo::ActivationFunction::LOGISTIC, ActivationLayerInfo::ActivationFunction::TANH, ActivationLayerInfo::ActivationFunction::HARD_SWISH, ActivationLayerInfo::ActivationFunction::LEAKY_RELU, }; /* Supported activation in the 16-bit integer domain */ static const std::array qsymm16_activations = { ActivationLayerInfo::ActivationFunction::LOGISTIC, ActivationLayerInfo::ActivationFunction::TANH, ActivationLayerInfo::ActivationFunction::HARD_SWISH }; Status validate_arguments(const ITensorInfo *src, const ITensorInfo *dst, const ActivationLayerInfo &activation_info) { ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8_SIGNED, DataType::QASYMM8, DataType::QSYMM16, DataType::F16, DataType::F32); const auto *uk = get_implementation(ActivationSelectorData{ src->data_type() }); ARM_COMPUTE_RETURN_ERROR_ON(uk == nullptr || uk->ukernel == nullptr); const DataType data_type = src->data_type(); const QuantizationInfo &oq_info = (dst != nullptr) ? dst->quantization_info() : src->quantization_info(); const ActivationLayerInfo::ActivationFunction f_act = activation_info.activation(); ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_data_type_quantized_asymmetric(data_type) && (std::find(std::begin(qasymm8_activations), std::end(qasymm8_activations), f_act) == std::end(qasymm8_activations)), "For QASYMM8 only hard swish, leaky relu, tanh, logistic, relu and lower/upper bounded relu are supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_data_type_quantized_symmetric(data_type) && (std::find(std::begin(qsymm16_activations), std::end(qsymm16_activations), f_act) == std::end(qsymm16_activations)), "For QSYMM16 only tanh and logistic are supported"); ARM_COMPUTE_RETURN_ERROR_ON((data_type == DataType::QASYMM8 || data_type == DataType::QASYMM16) && (f_act == ActivationLayerInfo::ActivationFunction::TANH) && (oq_info != QuantizationInfo(1.f / 128.f, 128))); ARM_COMPUTE_RETURN_ERROR_ON((data_type == DataType::QASYMM8 || data_type == DataType::QASYMM16) && (f_act == ActivationLayerInfo::ActivationFunction::LOGISTIC) && (oq_info != QuantizationInfo(1.f / 256.f, 0))); ARM_COMPUTE_RETURN_ERROR_ON(data_type == DataType::QASYMM8_SIGNED && (f_act == ActivationLayerInfo::ActivationFunction::TANH) && (oq_info != QuantizationInfo(1.f / 128.f, 0))); ARM_COMPUTE_RETURN_ERROR_ON(data_type == DataType::QASYMM8_SIGNED && (f_act == ActivationLayerInfo::ActivationFunction::LOGISTIC) && (oq_info != QuantizationInfo(1.f / 256.f, -128))); ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_symmetric(data_type) && (f_act == ActivationLayerInfo::ActivationFunction::TANH) && (oq_info != QuantizationInfo(1.f / 32768.f, 0))); ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_symmetric(data_type) && (f_act == ActivationLayerInfo::ActivationFunction::LOGISTIC) && (oq_info != QuantizationInfo(1.f / 32768.f, 0))); // Checks performed when dst is configured if((dst != nullptr) && (dst->total_size() != 0)) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(src, dst); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst); } return Status{}; } std::pair validate_and_configure_window(const ITensorInfo *src, ITensorInfo *dst) { // Configure kernel window Window win = calculate_max_window(*src, Steps()); if(dst != nullptr) { // dst auto inizialitation if not yet initialized auto_init_if_empty(*dst, *src->clone()); Coordinates coord; coord.set_num_dimensions(dst->num_dimensions()); dst->set_valid_region(ValidRegion(coord, dst->tensor_shape())); } return std::make_pair(Status{}, win); } } // namespace void CpuActivationKernel::configure(const ITensorInfo *src, ITensorInfo *dst, ActivationLayerInfo activation_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst); _act_info = activation_info; ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, dst, activation_info)); // Configure kernel window auto win_config = validate_and_configure_window(src, dst); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); ICPPKernel::configure(win_config.second); } Status CpuActivationKernel::validate(const ITensorInfo *src, const ITensorInfo *dst, const ActivationLayerInfo &act_info) { ARM_COMPUTE_UNUSED(act_info); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, dst, act_info)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(src->clone().get(), (dst != nullptr) ? dst->clone().get() : nullptr).first); return Status{}; } void CpuActivationKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) { // Early exit on disabled activation if(!_act_info.enabled()) { return; } ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window); ARM_COMPUTE_ERROR_ON(tensors.empty()); const ITensor *src = tensors.get_const_tensor(TensorType::ACL_SRC); ITensor *dst = tensors.get_tensor(TensorType::ACL_DST); const auto *uk = get_implementation(ActivationSelectorData{ src->info()->data_type() }); uk->ukernel(src, dst, _act_info, window); } const char *CpuActivationKernel::name() const { return "CpuActivationKernel"; } } // namespace kernels } // namespace cpu } // namespace arm_compute