/* * Copyright (c) 2016-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Utils.h" #include "support/ToolchainSupport.h" #include #include #include #include #include #include using namespace arm_compute; #ifndef DOXYGEN_SKIP_THIS std::string arm_compute::build_information() { static const std::string information = #include "arm_compute_version.embed" ; return information; } #endif /* DOXYGEN_SKIP_THIS */ std::string arm_compute::read_file(const std::string &filename, bool binary) { std::string out; std::ifstream fs; #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED try { #endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */ fs.exceptions(std::ifstream::failbit | std::ifstream::badbit); std::ios_base::openmode mode = std::ios::in; if(binary) { mode |= std::ios::binary; } fs.open(filename, mode); // Go to the end of the file fs.seekg(0, std::ios::end); // Reserve the memory required to store the file's content out.reserve(fs.tellg()); // Go back to the beginning of the file fs.seekg(0, std::ios::beg); // Copy the content of the file out.assign(std::istreambuf_iterator(fs), std::istreambuf_iterator()); #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED } catch(const std::ifstream::failure &e) { ARM_COMPUTE_ERROR_VAR("Accessing %s: %s", filename.c_str(), e.what()); } #endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */ return out; } const std::string &arm_compute::string_from_format(Format format) { static std::map formats_map = { { Format::UNKNOWN, "UNKNOWN" }, { Format::U8, "U8" }, { Format::S16, "S16" }, { Format::U16, "U16" }, { Format::S32, "S32" }, { Format::U32, "U32" }, { Format::F16, "F16" }, { Format::F32, "F32" }, { Format::UV88, "UV88" }, { Format::RGB888, "RGB888" }, { Format::RGBA8888, "RGBA8888" }, { Format::YUV444, "YUV444" }, { Format::YUYV422, "YUYV422" }, { Format::NV12, "NV12" }, { Format::NV21, "NV21" }, { Format::IYUV, "IYUV" }, { Format::UYVY422, "UYVY422" } }; return formats_map[format]; } const std::string &arm_compute::string_from_channel(Channel channel) { static std::map channels_map = { { Channel::UNKNOWN, "UNKNOWN" }, { Channel::R, "R" }, { Channel::G, "G" }, { Channel::B, "B" }, { Channel::A, "A" }, { Channel::Y, "Y" }, { Channel::U, "U" }, { Channel::V, "V" }, { Channel::C0, "C0" }, { Channel::C1, "C1" }, { Channel::C2, "C2" }, { Channel::C3, "C3" } }; return channels_map[channel]; } const std::string &arm_compute::string_from_data_layout(DataLayout dl) { static std::map dl_map = { { DataLayout::UNKNOWN, "UNKNOWN" }, { DataLayout::NCHW, "NCHW" }, { DataLayout::NHWC, "NHWC" }, }; return dl_map[dl]; } const std::string &arm_compute::string_from_data_type(DataType dt) { static std::map dt_map = { { DataType::UNKNOWN, "UNKNOWN" }, { DataType::S8, "S8" }, { DataType::U8, "U8" }, { DataType::S16, "S16" }, { DataType::U16, "U16" }, { DataType::S32, "S32" }, { DataType::U32, "U32" }, { DataType::S64, "S64" }, { DataType::U64, "U64" }, { DataType::F16, "F16" }, { DataType::F32, "F32" }, { DataType::F64, "F64" }, { DataType::SIZET, "SIZET" }, { DataType::QSYMM8, "QSYMM8" }, { DataType::QSYMM8_PER_CHANNEL, "QSYMM8_PER_CHANNEL" }, { DataType::QASYMM8_PER_CHANNEL, "QASYMM8_PER_CHANNEL" }, { DataType::QASYMM8, "QASYMM8" }, { DataType::QASYMM8_SIGNED, "QASYMM8_SIGNED" }, { DataType::QSYMM16, "QSYMM16" }, { DataType::QASYMM16, "QASYMM16" }, }; return dt_map[dt]; } const std::string &arm_compute::string_from_activation_func(ActivationLayerInfo::ActivationFunction act) { static std::map act_map = { { ActivationLayerInfo::ActivationFunction::ABS, "ABS" }, { ActivationLayerInfo::ActivationFunction::LINEAR, "LINEAR" }, { ActivationLayerInfo::ActivationFunction::LOGISTIC, "LOGISTIC" }, { ActivationLayerInfo::ActivationFunction::RELU, "RELU" }, { ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, "BRELU" }, { ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, "LU_BRELU" }, { ActivationLayerInfo::ActivationFunction::LEAKY_RELU, "LRELU" }, { ActivationLayerInfo::ActivationFunction::SOFT_RELU, "SRELU" }, { ActivationLayerInfo::ActivationFunction::ELU, "ELU" }, { ActivationLayerInfo::ActivationFunction::SQRT, "SQRT" }, { ActivationLayerInfo::ActivationFunction::SQUARE, "SQUARE" }, { ActivationLayerInfo::ActivationFunction::TANH, "TANH" }, { ActivationLayerInfo::ActivationFunction::IDENTITY, "IDENTITY" }, }; return act_map[act]; } const std::string &arm_compute::string_from_matrix_pattern(MatrixPattern pattern) { static std::map pattern_map = { { MatrixPattern::BOX, "BOX" }, { MatrixPattern::CROSS, "CROSS" }, { MatrixPattern::DISK, "DISK" }, { MatrixPattern::OTHER, "OTHER" }, }; return pattern_map[pattern]; } const std::string &arm_compute::string_from_non_linear_filter_function(NonLinearFilterFunction function) { static std::map func_map = { { NonLinearFilterFunction::MAX, "MAX" }, { NonLinearFilterFunction::MEDIAN, "MEDIAN" }, { NonLinearFilterFunction::MIN, "MIN" }, }; return func_map[function]; } const std::string &arm_compute::string_from_interpolation_policy(InterpolationPolicy policy) { static std::map interpolation_policy_map = { { InterpolationPolicy::AREA, "AREA" }, { InterpolationPolicy::BILINEAR, "BILINEAR" }, { InterpolationPolicy::NEAREST_NEIGHBOR, "NEAREST_NEIGHBOUR" }, }; return interpolation_policy_map[policy]; } const std::string &arm_compute::string_from_border_mode(BorderMode border_mode) { static std::map border_mode_map = { { BorderMode::UNDEFINED, "UNDEFINED" }, { BorderMode::CONSTANT, "CONSTANT" }, { BorderMode::REPLICATE, "REPLICATE" }, }; return border_mode_map[border_mode]; } const std::string &arm_compute::string_from_norm_type(NormType type) { static std::map norm_type_map = { { NormType::IN_MAP_1D, "IN_MAP_1D" }, { NormType::IN_MAP_2D, "IN_MAP_2D" }, { NormType::CROSS_MAP, "CROSS_MAP" }, }; return norm_type_map[type]; } const std::string &arm_compute::string_from_pooling_type(PoolingType type) { static std::map pool_type_map = { { PoolingType::MAX, "MAX" }, { PoolingType::AVG, "AVG" }, { PoolingType::L2, "L2" }, }; return pool_type_map[type]; } const std::string &arm_compute::string_from_gemmlowp_output_stage(GEMMLowpOutputStageType output_stage) { static std::map output_stage_map = { { GEMMLowpOutputStageType::NONE, "" }, { GEMMLowpOutputStageType::QUANTIZE_DOWN, "quantize_down" }, { GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT, "quantize_down_fixedpoint" }, { GEMMLowpOutputStageType::QUANTIZE_DOWN_FLOAT, "quantize_down_float" } }; return output_stage_map[output_stage]; } std::string arm_compute::string_from_pixel_value(const PixelValue &value, const DataType data_type) { std::stringstream ss; std::string converted_string; switch(data_type) { case DataType::U8: case DataType::QASYMM8: case DataType::QASYMM8_PER_CHANNEL: // Needs conversion to 32 bit, otherwise interpreted as ASCII values ss << uint32_t(value.get()); converted_string = ss.str(); break; case DataType::S8: case DataType::QASYMM8_SIGNED: case DataType::QSYMM8_PER_CHANNEL: // Needs conversion to 32 bit, otherwise interpreted as ASCII values ss << int32_t(value.get()); converted_string = ss.str(); break; case DataType::U16: case DataType::QASYMM16: ss << value.get(); converted_string = ss.str(); break; case DataType::S16: case DataType::QSYMM16: ss << value.get(); converted_string = ss.str(); break; case DataType::U32: ss << value.get(); converted_string = ss.str(); break; case DataType::S32: ss << value.get(); converted_string = ss.str(); break; case DataType::F32: converted_string = float_to_string_with_full_precision(value.get()); break; case DataType::F16: static_assert(sizeof(half) == 2, "Half must be 16 bit"); ss << value.get(); converted_string = ss.str(); break; default: ARM_COMPUTE_ERROR("Not handled"); } return converted_string; } std::string arm_compute::lower_string(const std::string &val) { std::string res = val; std::transform(res.begin(), res.end(), res.begin(), ::tolower); return res; } PadStrideInfo arm_compute::calculate_same_pad(TensorShape input_shape, TensorShape weights_shape, PadStrideInfo conv_info, DataLayout data_layout, const Size2D &dilation, const DimensionRoundingType &rounding_type) { const unsigned int width_idx = arm_compute::get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const unsigned int height_idx = arm_compute::get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const unsigned int in_width = input_shape[width_idx]; const unsigned int in_height = input_shape[height_idx]; const unsigned int kernel_width = weights_shape[width_idx]; const unsigned int kernel_height = weights_shape[height_idx]; const auto &strides = conv_info.stride(); // Calculate output dimensions const auto is_ceil = static_cast(rounding_type == DimensionRoundingType::CEIL); const unsigned int out_width = ((in_width - is_ceil) + strides.first - 1) / strides.first + is_ceil; const unsigned int out_height = ((in_height - is_ceil) + strides.second - 1) / strides.second + is_ceil; // Calculate effective weights sizes const int real_weight_width = (kernel_width - 1) * dilation.x() + 1; const int real_weight_height = (kernel_height - 1) * dilation.y() + 1; // Calculate total pad const int pad_width = std::max(0, static_cast((out_width - 1) * strides.first + real_weight_width - in_width)); const int pad_height = std::max(0, static_cast((out_height - 1) * strides.second + real_weight_height - in_height)); // Calculate individual paddings const unsigned int pad_left = pad_width / 2; const unsigned int pad_top = pad_height / 2; const unsigned int pad_right = pad_width - pad_left; const unsigned int pad_bottom = pad_height - pad_top; PadStrideInfo same_info(strides.first, strides.second, pad_left, pad_right, pad_top, pad_bottom, rounding_type); // Check for correctness of predicted output shape against the one calculated using the generated info const auto out_dims = scaled_dimensions(in_width, in_height, kernel_width, kernel_height, same_info, dilation); ARM_COMPUTE_ERROR_ON(out_dims.first != out_width || out_dims.second != out_height); ARM_COMPUTE_UNUSED(out_dims); return same_info; } std::pair arm_compute::deconvolution_output_dimensions(unsigned int in_width, unsigned int in_height, unsigned int kernel_width, unsigned int kernel_height, const PadStrideInfo &pad_stride_info) { const unsigned int pad_left = pad_stride_info.pad_left(); const unsigned int pad_top = pad_stride_info.pad_top(); const unsigned int pad_right = pad_stride_info.pad_right(); const unsigned int pad_bottom = pad_stride_info.pad_bottom(); const unsigned int stride_x = pad_stride_info.stride().first; const unsigned int stride_y = pad_stride_info.stride().second; ARM_COMPUTE_ERROR_ON(in_width < 1 || in_height < 1); ARM_COMPUTE_ERROR_ON(((in_width - 1) * stride_x + kernel_width) < (pad_left + pad_right)); ARM_COMPUTE_ERROR_ON(((in_height - 1) * stride_y + kernel_height) < (pad_top + pad_bottom)); const int w = stride_x * (in_width - 1) + kernel_width - (pad_left + pad_right); const int h = stride_y * (in_height - 1) + kernel_height - (pad_top + pad_bottom); return std::make_pair(w, h); } std::pair arm_compute::scaled_dimensions(unsigned int width, unsigned int height, unsigned int kernel_width, unsigned int kernel_height, const PadStrideInfo &pad_stride_info, const Size2D &dilation) { const unsigned int pad_left = pad_stride_info.pad_left(); const unsigned int pad_top = pad_stride_info.pad_top(); const unsigned int pad_right = pad_stride_info.pad_right(); const unsigned int pad_bottom = pad_stride_info.pad_bottom(); const unsigned int stride_x = pad_stride_info.stride().first; const unsigned int stride_y = pad_stride_info.stride().second; unsigned int w = 0; unsigned int h = 0; switch(pad_stride_info.round()) { case DimensionRoundingType::FLOOR: w = static_cast(std::floor((static_cast(width + pad_left + pad_right - (dilation.x() * (kernel_width - 1) + 1)) / stride_x) + 1)); h = static_cast(std::floor((static_cast(height + pad_top + pad_bottom - (dilation.y() * (kernel_height - 1) + 1)) / stride_y) + 1)); break; case DimensionRoundingType::CEIL: w = static_cast(std::ceil((static_cast(width + pad_left + pad_right - (dilation.x() * (kernel_width - 1) + 1)) / stride_x) + 1)); h = static_cast(std::ceil((static_cast(height + pad_top + pad_bottom - (dilation.y() * (kernel_height - 1) + 1)) / stride_y) + 1)); break; default: ARM_COMPUTE_ERROR("Unsupported rounding type"); } return std::make_pair(w, h); } bool arm_compute::needs_serialized_reduction(ReductionOperation op, DataType dt, unsigned int axis) { const bool is_arg_min_max = (op == ReductionOperation::ARG_IDX_MAX || op == ReductionOperation::ARG_IDX_MIN); const bool is_min_max = (op == ReductionOperation::MAX || op == ReductionOperation::MIN); const bool is_quantized_type = is_data_type_quantized(dt); const bool is_first_dim = (axis == 0); return !is_first_dim || is_arg_min_max || is_min_max || is_quantized_type; } #ifdef ARM_COMPUTE_ASSERTS_ENABLED void arm_compute::print_consecutive_elements(std::ostream &s, DataType dt, const uint8_t *ptr, unsigned int n, int stream_width, const std::string &element_delim) { switch(dt) { case DataType::U8: case DataType::QASYMM8: case DataType::QASYMM8_PER_CHANNEL: print_consecutive_elements_impl(s, ptr, n, stream_width, element_delim); break; case DataType::S8: case DataType::QASYMM8_SIGNED: case DataType::QSYMM8_PER_CHANNEL: print_consecutive_elements_impl(s, reinterpret_cast(ptr), n, stream_width, element_delim); break; case DataType::U16: case DataType::QASYMM16: print_consecutive_elements_impl(s, reinterpret_cast(ptr), n, stream_width, element_delim); break; case DataType::S16: case DataType::QSYMM16: print_consecutive_elements_impl(s, reinterpret_cast(ptr), n, stream_width, element_delim); break; case DataType::U32: print_consecutive_elements_impl(s, reinterpret_cast(ptr), n, stream_width, element_delim); break; case DataType::S32: print_consecutive_elements_impl(s, reinterpret_cast(ptr), n, stream_width, element_delim); break; case DataType::F32: print_consecutive_elements_impl(s, reinterpret_cast(ptr), n, stream_width, element_delim); break; case DataType::F16: print_consecutive_elements_impl(s, reinterpret_cast(ptr), n, stream_width, element_delim); break; default: ARM_COMPUTE_ERROR("Undefined element size for given data type"); } } int arm_compute::max_consecutive_elements_display_width(std::ostream &s, DataType dt, const uint8_t *ptr, unsigned int n) { switch(dt) { case DataType::U8: case DataType::QASYMM8: case DataType::QASYMM8_PER_CHANNEL: return max_consecutive_elements_display_width_impl(s, ptr, n); case DataType::S8: case DataType::QASYMM8_SIGNED: case DataType::QSYMM8_PER_CHANNEL: return max_consecutive_elements_display_width_impl(s, reinterpret_cast(ptr), n); case DataType::U16: case DataType::QASYMM16: return max_consecutive_elements_display_width_impl(s, reinterpret_cast(ptr), n); case DataType::S16: case DataType::QSYMM16: return max_consecutive_elements_display_width_impl(s, reinterpret_cast(ptr), n); case DataType::U32: return max_consecutive_elements_display_width_impl(s, reinterpret_cast(ptr), n); case DataType::S32: return max_consecutive_elements_display_width_impl(s, reinterpret_cast(ptr), n); case DataType::F32: return max_consecutive_elements_display_width_impl(s, reinterpret_cast(ptr), n); case DataType::F16: return max_consecutive_elements_display_width_impl(s, reinterpret_cast(ptr), n); default: ARM_COMPUTE_ERROR("Undefined element size for given data type"); } return 0; } #endif /* ARM_COMPUTE_ASSERTS_ENABLED */