/* * Copyright (c) 2016-2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/Utils.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/utils/StringUtils.h" #include "arm_compute/function_info/ActivationLayerInfo.h" #include #include #include #include #include #include namespace arm_compute { std::string read_file(const std::string &filename, bool binary) { std::string out; std::ifstream fs; #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED try { #endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */ fs.exceptions(std::ifstream::failbit | std::ifstream::badbit); std::ios_base::openmode mode = std::ios::in; if (binary) { mode |= std::ios::binary; } fs.open(filename, mode); // Go to the end of the file fs.seekg(0, std::ios::end); // Reserve the memory required to store the file's content out.reserve(fs.tellg()); // Go back to the beginning of the file fs.seekg(0, std::ios::beg); // Copy the content of the file out.assign(std::istreambuf_iterator(fs), std::istreambuf_iterator()); #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED } catch (const std::ifstream::failure &e) { ARM_COMPUTE_ERROR_VAR("Accessing %s: %s", filename.c_str(), e.what()); } #endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */ return out; } const std::string &string_from_channel(Channel channel) { static std::map channels_map = {{Channel::UNKNOWN, "UNKNOWN"}, {Channel::R, "R"}, {Channel::G, "G"}, {Channel::B, "B"}, {Channel::A, "A"}, {Channel::Y, "Y"}, {Channel::U, "U"}, {Channel::V, "V"}, {Channel::C0, "C0"}, {Channel::C1, "C1"}, {Channel::C2, "C2"}, {Channel::C3, "C3"}}; return channels_map[channel]; } const std::string &string_from_border_mode(BorderMode border_mode) { static std::map border_mode_map = { {BorderMode::UNDEFINED, "UNDEFINED"}, {BorderMode::CONSTANT, "CONSTANT"}, {BorderMode::REPLICATE, "REPLICATE"}, }; return border_mode_map[border_mode]; } const std::string &string_from_norm_type(NormType type) { static std::map norm_type_map = { {NormType::IN_MAP_1D, "IN_MAP_1D"}, {NormType::IN_MAP_2D, "IN_MAP_2D"}, {NormType::CROSS_MAP, "CROSS_MAP"}, }; return norm_type_map[type]; } const std::string &string_from_pooling_type(PoolingType type) { static std::map pool_type_map = { {PoolingType::MAX, "MAX"}, {PoolingType::AVG, "AVG"}, {PoolingType::L2, "L2"}, }; return pool_type_map[type]; } bool is_pool_region_entirely_outside_input(const PoolingLayerInfo &info) { if (info.is_global_pooling || info.exclude_padding || info.pool_size.x() == 0 || info.pool_size.y() == 0) { return false; } const auto ps = info.pad_stride_info; const auto pool_le_padding_x = info.pool_size.x() <= std::max({ps.pad_left(), ps.pad_right()}); const auto pool_le_padding_y = info.pool_size.y() <= std::max({ps.pad_top(), ps.pad_bottom()}); return pool_le_padding_x || pool_le_padding_y; } bool is_pool_3d_region_entirely_outside_input(const Pooling3dLayerInfo &info) { if (info.is_global_pooling || info.pool_size.x() == 0 || info.pool_size.y() == 0 || info.pool_size.z() == 0) { return false; } const auto ps = info.padding; const auto pool_le_padding_x = info.pool_size.x() <= std::max({ps.left, ps.right}); const auto pool_le_padding_y = info.pool_size.y() <= std::max({ps.top, ps.bottom}); const auto pool_le_padding_z = info.pool_size.z() <= std::max({ps.front, ps.back}); return pool_le_padding_x || pool_le_padding_y || pool_le_padding_z; } const std::string &string_from_gemmlowp_output_stage(GEMMLowpOutputStageType output_stage) { static std::map output_stage_map = { {GEMMLowpOutputStageType::NONE, ""}, {GEMMLowpOutputStageType::QUANTIZE_DOWN, "quantize_down"}, {GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT, "quantize_down_fixedpoint"}, {GEMMLowpOutputStageType::QUANTIZE_DOWN_FLOAT, "quantize_down_float"}}; return output_stage_map[output_stage]; } std::string string_from_pixel_value(const PixelValue &value, const DataType data_type) { std::stringstream ss; std::string converted_string; switch (data_type) { case DataType::U8: case DataType::QASYMM8: // Needs conversion to 32 bit, otherwise interpreted as ASCII values ss << uint32_t(value.get()); converted_string = ss.str(); break; case DataType::S8: case DataType::QASYMM8_SIGNED: case DataType::QSYMM8_PER_CHANNEL: // Needs conversion to 32 bit, otherwise interpreted as ASCII values ss << int32_t(value.get()); converted_string = ss.str(); break; case DataType::U16: case DataType::QASYMM16: ss << value.get(); converted_string = ss.str(); break; case DataType::S16: case DataType::QSYMM16: ss << value.get(); converted_string = ss.str(); break; case DataType::U32: ss << value.get(); converted_string = ss.str(); break; case DataType::S32: ss << value.get(); converted_string = ss.str(); break; case DataType::F32: converted_string = float_to_string_with_full_precision(value.get()); break; case DataType::F16: static_assert(sizeof(half) == 2, "Half must be 16 bit"); ss << value.get(); converted_string = ss.str(); break; default: ARM_COMPUTE_ERROR("Not handled"); } return converted_string; } PadStrideInfo calculate_same_pad(TensorShape input_shape, TensorShape weights_shape, PadStrideInfo conv_info, DataLayout data_layout, const Size2D &dilation, const DimensionRoundingType &rounding_type) { const auto &strides = conv_info.stride(); ARM_COMPUTE_ERROR_ON_MSG((strides.first < 1 || strides.second < 1), "Stride values should be greater than or equal to 1."); const unsigned int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const unsigned int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const unsigned int in_width = input_shape[width_idx]; const unsigned int in_height = input_shape[height_idx]; const unsigned int kernel_width = weights_shape[width_idx]; const unsigned int kernel_height = weights_shape[height_idx]; // Calculate output dimensions const auto is_ceil = static_cast(rounding_type == DimensionRoundingType::CEIL); const unsigned int out_width = ((in_width - is_ceil) + strides.first - 1) / strides.first + is_ceil; const unsigned int out_height = ((in_height - is_ceil) + strides.second - 1) / strides.second + is_ceil; // Calculate effective weights sizes const int real_weight_width = (kernel_width - 1) * dilation.x() + 1; const int real_weight_height = (kernel_height - 1) * dilation.y() + 1; // Calculate total pad const int pad_width = std::max(0, static_cast((out_width - 1) * strides.first + real_weight_width - in_width)); const int pad_height = std::max(0, static_cast((out_height - 1) * strides.second + real_weight_height - in_height)); // Calculate individual paddings const unsigned int pad_left = pad_width / 2; const unsigned int pad_top = pad_height / 2; const unsigned int pad_right = pad_width - pad_left; const unsigned int pad_bottom = pad_height - pad_top; PadStrideInfo same_info(strides.first, strides.second, pad_left, pad_right, pad_top, pad_bottom, rounding_type); // Check for correctness of predicted output shape against the one calculated using the generated info const auto out_dims = scaled_dimensions(in_width, in_height, kernel_width, kernel_height, same_info, dilation); ARM_COMPUTE_ERROR_ON(out_dims.first != out_width || out_dims.second != out_height); ARM_COMPUTE_UNUSED(out_dims); return same_info; } std::pair deconvolution_output_dimensions(unsigned int in_width, unsigned int in_height, unsigned int kernel_width, unsigned int kernel_height, const PadStrideInfo &pad_stride_info) { const unsigned int pad_left = pad_stride_info.pad_left(); const unsigned int pad_top = pad_stride_info.pad_top(); const unsigned int pad_right = pad_stride_info.pad_right(); const unsigned int pad_bottom = pad_stride_info.pad_bottom(); const unsigned int stride_x = pad_stride_info.stride().first; const unsigned int stride_y = pad_stride_info.stride().second; ARM_COMPUTE_ERROR_ON(in_width < 1 || in_height < 1); ARM_COMPUTE_ERROR_ON(((in_width - 1) * stride_x + kernel_width) < (pad_left + pad_right)); ARM_COMPUTE_ERROR_ON(((in_height - 1) * stride_y + kernel_height) < (pad_top + pad_bottom)); const int w = stride_x * (in_width - 1) + kernel_width - (pad_left + pad_right); const int h = stride_y * (in_height - 1) + kernel_height - (pad_top + pad_bottom); return std::make_pair(w, h); } std::pair scaled_dimensions(int width, int height, int kernel_width, int kernel_height, const PadStrideInfo &pad_stride_info, const Size2D &dilation) { const int dilation_x = dilation.x(); const int dilation_y = dilation.y(); const int pad_left = pad_stride_info.pad_left(); const int pad_top = pad_stride_info.pad_top(); const int pad_right = pad_stride_info.pad_right(); const int pad_bottom = pad_stride_info.pad_bottom(); const int stride_x = pad_stride_info.stride().first; const int stride_y = pad_stride_info.stride().second; int w = 0; int h = 0; switch (pad_stride_info.round()) { case DimensionRoundingType::FLOOR: w = static_cast(std::floor( (static_cast(width + pad_left + pad_right - (dilation_x * (kernel_width - 1) + 1)) / stride_x) + 1)); h = static_cast( std::floor((static_cast(height + pad_top + pad_bottom - (dilation_y * (kernel_height - 1) + 1)) / stride_y) + 1)); break; case DimensionRoundingType::CEIL: w = static_cast(std::ceil( (static_cast(width + pad_left + pad_right - (dilation_x * (kernel_width - 1) + 1)) / stride_x) + 1)); h = static_cast( std::ceil((static_cast(height + pad_top + pad_bottom - (dilation_y * (kernel_height - 1) + 1)) / stride_y) + 1)); break; default: ARM_COMPUTE_ERROR("Unsupported rounding type"); } w = std::max(1, w); h = std::max(1, h); return std::make_pair(static_cast(w), static_cast(h)); } std::pair scaled_dimensions_signed( int width, int height, int kernel_width, int kernel_height, const PadStrideInfo &pad_stride_info) { const int pad_left = pad_stride_info.pad_left(); const int pad_top = pad_stride_info.pad_top(); const int pad_right = pad_stride_info.pad_right(); const int pad_bottom = pad_stride_info.pad_bottom(); const int stride_x = pad_stride_info.stride().first; const int stride_y = pad_stride_info.stride().second; int w = 0; int h = 0; switch (pad_stride_info.round()) { case DimensionRoundingType::FLOOR: w = static_cast( std::floor((static_cast(width + pad_left + pad_right - kernel_width) / stride_x) + 1)); h = static_cast( std::floor((static_cast(height + pad_top + pad_bottom - kernel_height) / stride_y) + 1)); break; case DimensionRoundingType::CEIL: w = static_cast( std::ceil((static_cast(width + pad_left + pad_right - kernel_width) / stride_x) + 1)); h = static_cast( std::ceil((static_cast(height + pad_top + pad_bottom - kernel_height) / stride_y) + 1)); break; default: ARM_COMPUTE_ERROR("Unsupported rounding type"); } return std::make_pair(static_cast(w), static_cast(h)); } std::tuple scaled_3d_dimensions_signed(int width, int height, int depth, int kernel_width, int kernel_height, int kernel_depth, const Pooling3dLayerInfo &pool3d_info) { const int pad_left = pool3d_info.padding.left; const int pad_top = pool3d_info.padding.top; const int pad_right = pool3d_info.padding.right; const int pad_bottom = pool3d_info.padding.bottom; const int pad_front = pool3d_info.padding.front; const int pad_back = pool3d_info.padding.back; const int stride_x = pool3d_info.stride.x(); const int stride_y = pool3d_info.stride.y(); const int stride_z = pool3d_info.stride.z(); int w = 0; int h = 0; int d = 0; switch (pool3d_info.round_type) { case DimensionRoundingType::FLOOR: w = static_cast( std::floor((static_cast(width + pad_left + pad_right - kernel_width) / stride_x) + 1)); h = static_cast( std::floor((static_cast(height + pad_top + pad_bottom - kernel_height) / stride_y) + 1)); d = static_cast( std::floor((static_cast(depth + pad_front + pad_back - kernel_depth) / stride_z) + 1)); break; case DimensionRoundingType::CEIL: w = static_cast( std::ceil((static_cast(width + pad_left + pad_right - kernel_width) / stride_x) + 1)); h = static_cast( std::ceil((static_cast(height + pad_top + pad_bottom - kernel_height) / stride_y) + 1)); d = static_cast( std::ceil((static_cast(depth + pad_front + pad_back - kernel_depth) / stride_z) + 1)); break; default: ARM_COMPUTE_ERROR("Unsupported rounding type"); } return std::make_tuple(static_cast(w), static_cast(h), static_cast(d)); } bool needs_serialized_reduction(ReductionOperation op, DataType dt, unsigned int axis) { const bool is_min_max = (op == ReductionOperation::MAX || op == ReductionOperation::MIN); const bool is_quantized_type = is_data_type_quantized(dt); const bool is_first_dim = (axis == 0); return !is_first_dim || (is_quantized_type && !is_min_max); } QuantizationInfo get_softmax_output_quantization_info(DataType input_type, bool is_log) { // Note: Output quantization info for softmax should always have // * Softmax with QASYMM8: scale = 1/256, offset = 0 // * Softmax with QASYMM8_SIGNED: scale = 1/256, offset = -128 // * LogSoftmax with QASYMM8: scale = 1/256, offset = 0 // * LogSoftmax with QASYMM8_SIGNED: scale = 16/256, offset = 127 if (is_data_type_quantized_asymmetric_signed(input_type)) { if (is_log) { return QuantizationInfo(16.f / 256, 127); } else { return QuantizationInfo(1.f / 256, -128); } } return QuantizationInfo(1.f / 256, 0); } std::pair get_quantized_activation_min_max(const ActivationLayerInfo &act_info, DataType data_type, UniformQuantizationInfo oq_info) { const bool is_qasymm8_signed = is_data_type_quantized_asymmetric_signed(data_type); const auto a = act_info.a(); const auto b = act_info.b(); const int a_int = is_qasymm8_signed ? quantize_qasymm8_signed(a, oq_info) : quantize_qasymm8(a, oq_info); const int b_int = is_qasymm8_signed ? quantize_qasymm8_signed(b, oq_info) : quantize_qasymm8(b, oq_info); const auto type_max_value = std::get<1>(get_min_max(data_type)).get(); const int32_t min_activation = act_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU ? std::min(oq_info.offset, type_max_value) : b_int; const int32_t max_activation = act_info.activation() == ActivationLayerInfo::ActivationFunction::RELU ? type_max_value : a_int; return std::make_pair(min_activation, max_activation); } std::unordered_map get_padding_info(std::initializer_list tensors) { std::unordered_map res; for (const ITensor *tensor : tensors) { if (tensor) { res.insert({tensor->info(), tensor->info()->padding()}); } } return res; } std::unordered_map get_padding_info(std::initializer_list infos) { std::unordered_map res; for (const ITensorInfo *info : infos) { if (info) { res.insert({info, info->padding()}); } } return res; } bool has_padding_changed(const std::unordered_map &padding_map) { return std::find_if(padding_map.begin(), padding_map.end(), [](const std::pair &padding_info) { return (padding_info.first->padding() != padding_info.second); }) != padding_map.end(); } #ifdef ARM_COMPUTE_ASSERTS_ENABLED void print_consecutive_elements(std::ostream &s, DataType dt, const uint8_t *ptr, unsigned int n, int stream_width, const std::string &element_delim) { switch (dt) { case DataType::U8: case DataType::QASYMM8: print_consecutive_elements_impl(s, ptr, n, stream_width, element_delim); break; case DataType::S8: case DataType::QSYMM8: case DataType::QASYMM8_SIGNED: case DataType::QSYMM8_PER_CHANNEL: print_consecutive_elements_impl(s, reinterpret_cast(ptr), n, stream_width, element_delim); break; case DataType::U16: case DataType::QASYMM16: print_consecutive_elements_impl(s, reinterpret_cast(ptr), n, stream_width, element_delim); break; case DataType::S16: case DataType::QSYMM16: print_consecutive_elements_impl(s, reinterpret_cast(ptr), n, stream_width, element_delim); break; case DataType::U32: print_consecutive_elements_impl(s, reinterpret_cast(ptr), n, stream_width, element_delim); break; case DataType::S32: print_consecutive_elements_impl(s, reinterpret_cast(ptr), n, stream_width, element_delim); break; case DataType::U64: print_consecutive_elements_impl(s, reinterpret_cast(ptr), n, stream_width, element_delim); break; case DataType::S64: print_consecutive_elements_impl(s, reinterpret_cast(ptr), n, stream_width, element_delim); break; case DataType::BFLOAT16: print_consecutive_elements_impl(s, reinterpret_cast(ptr), n, stream_width, element_delim); break; case DataType::F16: print_consecutive_elements_impl(s, reinterpret_cast(ptr), n, stream_width, element_delim); break; case DataType::F32: print_consecutive_elements_impl(s, reinterpret_cast(ptr), n, stream_width, element_delim); break; default: ARM_COMPUTE_ERROR("Undefined element size for given data type"); } } int max_consecutive_elements_display_width(std::ostream &s, DataType dt, const uint8_t *ptr, unsigned int n) { switch (dt) { case DataType::U8: case DataType::QASYMM8: return max_consecutive_elements_display_width_impl(s, ptr, n); case DataType::S8: case DataType::QSYMM8: case DataType::QASYMM8_SIGNED: case DataType::QSYMM8_PER_CHANNEL: return max_consecutive_elements_display_width_impl(s, reinterpret_cast(ptr), n); case DataType::U16: case DataType::QASYMM16: return max_consecutive_elements_display_width_impl(s, reinterpret_cast(ptr), n); case DataType::S16: case DataType::QSYMM16: return max_consecutive_elements_display_width_impl(s, reinterpret_cast(ptr), n); case DataType::U32: return max_consecutive_elements_display_width_impl(s, reinterpret_cast(ptr), n); case DataType::S32: return max_consecutive_elements_display_width_impl(s, reinterpret_cast(ptr), n); case DataType::U64: return max_consecutive_elements_display_width_impl(s, reinterpret_cast(ptr), n); case DataType::S64: return max_consecutive_elements_display_width_impl(s, reinterpret_cast(ptr), n); case DataType::BFLOAT16: return max_consecutive_elements_display_width_impl(s, reinterpret_cast(ptr), n); case DataType::F16: return max_consecutive_elements_display_width_impl(s, reinterpret_cast(ptr), n); case DataType::F32: return max_consecutive_elements_display_width_impl(s, reinterpret_cast(ptr), n); default: ARM_COMPUTE_ERROR("Undefined element size for given data type"); } return 0; } #endif /* ARM_COMPUTE_ASSERTS_ENABLED */ } // namespace arm_compute